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PREFACE

Presented here, as complete papers or abstracts, are the major

contributions to a conference held at The Pennsylvania State University

in February 1963. The speakers were invited, and their lectures were

mainly concerned with the following subject areas:

I • Linearly interacting waves of physically different kinds:

A. Space-charge waves and magnetoionic-type waves

encountered in plasma amplifying devices.

B. Whistlers produced by interacting streams.

II. Nonlinearly interacting waves that are normally of the

same nature but of different frequency:

A. High power and low power waves in stationary and

streaming ionized media.

B. Parametric wave interaction as it may occur in

propagation through the solar corona.

C. Nonlinear optics of ionized media.

The conference was designed to bring together outstanding workers

in the fields of weak interactions and dynamic nonlinear phenomena in

ionized media such as the solar corona and exospheric and ionospheric

plasmas, and prominent workers engaged in developing high power micro-
wave and plasma devices. It was our hope that in sharing a discussion

of fundamental problems in plasma physics, scientists and engineers

from these related but quite different fields would recognize the possi-

bility of coordinating the two distinct bodies of literature evolving

from geophysical interests and device engineering.

The presence of Dr. O. E. H. Rydbeck as a distinguished visiting

professor of electrical engineering at this University provided the

basic motivation for the conference. His great influence is indicated

by his large contribution to this volume. Dr. A. J. Ferraro, associate
professor of electrical engineering, undertook the numerous duties of

conference chairman. The University is greatly indebted to the contrib-

utors whose work is reported herein.

It is a great pleasure to acknowledge the financial support of the

Office of Space Sciences of the National Aeronautics and Space Admin-
istration, which made the conference possible and permitted the publica-

tion of these papers.

ARTHUR H. WAYNICK, Head

Department of Electrical Engineering

and Director of

The Ionosphere Research Laboratory

University Park, Pennsylvania

June 28, 1963
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1. SUMMARY

I. ELECTROMAGNETIC NONLINEAR INTERACTION AND

REFLECTION FROM A PLANE IONIZED MEDIUM _'_

 65-I0068

The study of the dynamic nonlinear reflection of radio waves from

ionized media has recently become a subject of practical importance,

apart from the interesting theoretical problems involved in such studies.

Rocket-borne transmitters and ionospheric topside sounders now make it

possible to generate dynamic ionospheric nonlinearities and to obtain

in situ recordings of the results produced. These experiments will

doubtless yield important ionospheric propagation information, especially

in the upper ionosphere where losses are small and nonlinear resonance

effects may be quite important.

It is the purpose of the research reported in this communication to

study the reflection properties of an isotropic ionized medium in the

presence of nonlinear effects produced in the medium by a separate, very

powerful "pump" wave of angular frequency _p. It is shown, to the first

order, that if a primary signal or probing wave of angular frequency _o

impinges on the disturbed ionized medium at some specified angle, waves

of frequencies 6Oo, t0o + _p, and _o - _p are returned from the layer.

The laws of reflection and refraction deduced for these waves may

be considered as typical expressions for the nonlinear optics of the

system. These relations have very interesting properties. They show,

for example, that the difference frequency wave is returned in the direc-

tion of the incident primary wave if _p = 2(oo and if the pump wave is

normally incident. Since this makes the difference frequency equal (in

magnitude) to the signal frequency, the peculiar situation arises wherein

the reflected wave direction is that of the incident primary wave.

It is furthermore shown that the sum and difference frequency waves

may be very much enhanced by "nonlinear" or parametric resonances of the

system. When conditions prevail for degenerate parametric resonance of

the difference frequency wave, the medium acts as a parametric amplifier

with the remarkable property that the amplified wave is returned in the

primary incidence direction. The energy providing this amplification

is furnished by the powerful pump wave.

The properties of the sum and difference frequency waves, also called

"secondary waves," have likewise been investigated inside the ionized

medium. It is shown that four types of secondary waves are produced in

the medium, two of which are associated with the primary waves and two

of which exhibit the properties of "independent" electromagnetic waves.

It is waves of the latter type that leave the interaction region and are
observable from the "outside."

Scientific Report No. 183, Ionosphere Research Laboratory, The

Pennsylvania State University, April 15, 1963.
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To show how the secondary waves leave the interaction region, the

theory has been extended, in approximate form, to the practically impor-

tant but now very difficult case of a slowly varying inhomogeneous medium.

When the interaction region is small, counted in pump wavelengths, the

resonance effects become much less pronounced. The smaller the primary

partial reflection, the greater the nonlinear resonance interaction.

Problems of this kind are of considerable interest in connection
with harmonic or subharmonic radio wave radiation from the solar corona.

Now that ionospheric topside sounders are available, it should be possi-

ble to check experimentally some of the results presented in this report.
It might also be worthwhile to pump-irradiate ionized meteor trails and
observe the effects of the echoes then obtained.

The results of the present investigation are of a fairly general
nature, in spite of the fact that magnetoionic effects have been excluded.

Some of the results may, in principle, find direct application in the
nonlinear laser field.

The investigations reported in this communication are presently being

extended to the nonlinear magnetoionic medium, on the basis of the dynamic

nonlinear magnetoionic theory recently published by the author (5).

2. WAVE EQUATION OF THE OSCILLATING MEDIUM

We assume that the signal or probing wave, of angular frequency COo,
and the high power pump wave or waves producing the nonlinear oscilla-

tions have polarizations and angles of incidence upon the ionized layer,
as shown in Fig. 1.

In an earlier communication Rydbeck (1) showed that the high power

wave or waves produce a nonlinear variation ZhNii of the mean electron

density N , and a longitudinal electron velocity vL in the wave normal
°ii

direction _II_" These electron density and velocity fluctuations travel

through the medium, locked to the high power wave, and can be written as

follows (1):

coS(_pt-kp_) (1)
ANII _NOll

0
v L -- v L cos(ept-kp_) (2)

where _p and _ depend upon the frequency or frequencies of the high power

waves. Besides the nonlinear plasma wave (Eqs. 1 and 2), one must also

consider the linear transverse electron velocities v T and v T produced
X Z

5



by the high power waves. The velocities produced by this high power or
pump wave thus become

Vp - v T
x x

Vp = v T
z z

+ v L = VTCOS_ii P + vLsin_iI Px

+ VLz - -VTSin@ii P + VLCOS_ii P

(3)

If v denotes the electron velocities of the signal wave (it will
Y

be split up in a spectrum of frequency components), its wave equation

can be written (note: _/_ = 0)
Y

8 2 8 2 1 8 2 )--Sx2 + Bz--2 - C--2 --St2 Ey + _0e 88--t(NIIVy) =

0

o (_)

where Co = I/_/_oCv'o and

NII= N + AN I (5)
oii I

If the Lorentz forces are taken into account, the equation of motion of

the electrons becomes (collisional friction neglected)

8v 8v 8v
e

__Z+ Vp _ + Vp __ e E + _o _ (vp Hz-VP H ) (6)
8t 8 8 m y x

x x z z x z

From Maxwell's equations, Eq. 6 can be written

= . e _ (6a)

8t dt m dt

where

d 8 8 8
-- _-_ + Vp _ ÷ Vp (7)d-t 8x _1

x z

We notice that for a streaming medium (_Vp/St = 0) 8v /St = -(eEy/m).' y



If we introduce

2 2 ANII 2

-- (l+y--) =
_Oli ooii oo

°II

[I +_ c o s (ept -_pr)]
II

(8)

2
o.)

°°ii

2

°II

(9)

p 2 _ B 2 + a 2 I 8 2

e 8x 2 8z 2 2c _t 2
O

(electromagnetic wave

operator for vacuum)
(lO)

= E
_t y

(11)

the wave equation (Eq. 4) can be written (12)

8 d [(_Pe28t dt

2
00

°°ii

2
C
0

2

(8Vp 8Vp )_°°II x 8 + z 8@ '= 2 8t 8x 8t 8z
C
O

In detail, Eq. 12 becomes

82 8Vp 8vp 82 2 ) e2,)x 8 z 3 + Vp 8 (_p+ + + Vp 8tSx 8t8----_
3t 2 8t 8x 8t 8z x z

2

co ( 82 82 82°°II _ + vp 8tSx + Vp_-- 8tSz
c 8t 2 x z
O

_ = 0 (12a)

3. WAVE REFLECTION, ONLY ELECTRON DENSITY OSCILLATIONS CONSIDERED

To distinguish between the two nonlinear effects, we first study

the reflection property of the layer when the velocity fluctuations are



neglected. We assume Vp = 0 = VT, and disregard for the moment the fact

that these velocities, in reality, always differ from zero when ZkNii does
so. Equation 12 now simplifies to

2

f 82 82 82 o___ + 1 oo

Sx 8z 2 c 28t 2o Co

II

[I + Dc°s(ePt-_pr!]I * = °(13)_

We introduce

6o

k =_Pn
p c p

0

k = --_ n = k sin_ll
Px Co Px P P

(lh)

k = -_ n ," k cos_ I
c Pz P IPz o p

where n is assumed to be a known function of the angular pump frequency
p

. Furthermore, we introduce the variable
P

n n

Px Pz (l_)
"_ = t X - -- Z

C C
0 0

and assume that _ can be written as

e q q "qTYI*q

whe re

2
2 _ 2

I 1 _I 2 22 (17)_ °°II = --q- n -- k n
2

1 __- 2 q o q
kq Co _q Co q



in which k = co /c , and co denotes the angular frequency of an unper-
o q o q

q
turbed wave with the following notations:

= _ + _ ; _ = _ + 2_ , etc. (18)
_+-I o -- p _+2 o -- p

The wave equation (Eq. 13) now becomes

2

d2 l-d mooiI-- + j2a_ --q + 2 _cos ¢o "c
d_ 2 q l-n 2 l-n P

P P

where

o (3.9)

= n n + n n = n n cos( -
dq qx Px qz Pz q p @IIp

= n n cosA@
qP q

We next introduce

)@II
q

(20)

t-d

+j_q q
1-n 2

P

_q = e 7Tq
2 3.

(23.)

and, with

u = e _/2
P

we obtain the final (Mathieu) equation

-- + % + 2elCOS 2 u =
du 2 Oq 2

where

2

h_°q2 { l-d_- ) and e D8o 2 2 ' I
q _ 1-n

P P

0

2a_2
°°II I

2 2
0o l-n
P P

(22)

(23)

(2h)



If we use the notations of Rydbeck (2), the solution to Eq. 23 can

be written, for our purposes,

n= +oo

+j)u _ +j2nu
= (_q e (2,5)

Tq2 e bqn

where the amplitude coefficients are obtained from the equations

j2 }{[_q + j(2n+i) + e bOq qn

+ el(b + b ) = 0 (n=..,-2,-1,O,1,2,...) (26)
qn-I qn+l

and with an accuracy sufficient for our purpose (2), _q is obtained from
the relation

#q = -( eZ_oq-]_ +
(27)

which, for the present case, is conveniently written

q e ]2: +j( e%_--o _l) _ __l -- j(_e

q 2(_fOOq-1)

-1-5
o
q

or

* j -- j(_7 e - _ )
_q o

q q

)
q

(28)

(28a)

That is,

+j(_ t-k r-6 _ 7) n=jroo
q q _q P _ _ +jn_

= e L b e P@q qn
n-_ ..oo

429)

I0



b

q+2

By Eq. 26 we furthermore obtain, neglecting the second order terms
and b ,

q_
2

b = b

q+i qo l+(_/O

b = b

q-1 qo l-(Ve

- 5
o
q

/2)
q

- 5
o
q

/2)

q

(30)

When

e 1
(_eo - 1)2 < (T)2

q
(31)

the medium becomes unstable, and exponentially growing or evanescing

waves may result.

We find from Eq. 24 that

n )_ i = 2 _ _P + 2 , q
2

q p I q 1-np

l-n 2 2 + _--_(l-np 2) - 2n n cosA@
q P q

P

(32)

If we neglect 5 /2 in Eq. 30 (well outside the instability range), we
Gq

we obtain from Eq. 30

_2

b = +_ b _ °°II I

q q0 2 mm
÷I q p 2¥ oo-_(1-np 2)-2n n COS_

-1 q q p

(33)

II



In the center of the instability or resonance range _U = _I, we obtain

q

(bq 1 - jbq°

-V_o = +_I
q

which is a finite large value.

We note from Eq. 33 that the magnitude of the b

depends upon the difference in propagation angles q-l

signal and pump waves. Furthermore, as is obvious +l

we consider only propagating pump waves (n 2 > 0).
P

The denominator in Eq. 33 is zero for

coefficients

between the

from Eq. 8,

q qres 14l-n 2cos2A_
P q

/O0p 2 002 1-np2cos 2A@q ]+ npCOSAmq V--_--- °°II (l-n 2)2
P

(35)

If we assume that n = 0 can be realized physically -- that the 2kNii
P

oscillations do not travel or propagate -- we find that

= -_ (n =0)
qres 2 p

(36)

which is a degenerate parametric resonance. If the pump and signal waves

travel perpendicularly to each other, Eq. 35 assumes the simple form

0o

_qres = (l-np2) -_2 (A_q = _+_/2) (37)

It is important and interesting to note that resonance interaction

also takes place in this case. When 2_0q = _ w/2, we speak of transverse

resonance interaction; and when A_q = 0 _K, of longitudinal resonance
interaction.

I2



Since

2
(D

[ el ooll_____ N I (co
Re(_q max 2 _ l-n 2

) (38)
q qres

P P

we note that maximum exponential growth, or decay, in the instability

region is independent of the angle 2_0q between the waves.

Furthermore, from Eq. 35 it appears that a physical resonance is

possible only if

2

°°ii

2 2 2
co (l-n )
P P

2
-_ l-n cos2Ae

P q

Since n2 is in reality a function of both _2 and _ , this condition

P P °°ii

can not always be satisfied. If we assume (I) that ne = i - 4a9 /ee,

P ooii P

we find that Eq. 35 can be written

hco2

co o011
_q = _£

res 2 2 2 2 2
cos Aeq + _ sin Aeqh_OOll p

h _2 heo2oi

[I °°II)] 2__1 I)• +jsinA@q (1 2 (n
co P _o 2
P p

(35a)

When Z_0q = 0 this resonance is possible, in principle, for any value of

When _q _ 0 it is possible only when _2 = 4_oe , that is, when_°ii P ooll

n_ = 0 = n_, which is a true degenerate parametric resonance.P

Finally, we find that the relative interaction bandwidth, determined

by the condition_ - 1 = + e /2, approximately becomes
O -- 1
q

2
Ao_ oo

qres _ °°II I
- (39)

co _ _ d

qres qres p I-_2
n
q

13



In the instability range Z_0 , the ionized medium needs only the
qres

slightest primary triggering (expressed by b ) in order to radiate at
the (difference) frequency _ - _ . qo

qres P

Next, let us consider the final field,

_tot

q----+oo

= _ _q

(4o)

If we limit ourselves to the first "sidebands" or secondary waves, that

is, to q = 0 + I, and assume that _ is the angular frequency of the
O

primary signal wave reaching the medium from outside (see Fig. i and
Eq. 18), we obtain

6

-j - +
@o = e [b ° e

o

+J(m+it-kp _) +j(m_l t+_p_)
+ b e + b e

o +I o -I
• • i]

@÷1 = e

6

-j[_+l _- _+l(_pt-_p_)] [b+loe+J_+l t

@_l _ e

+b+le

-I

+j(_ t+_ _)
o p

6
-- _-I ----

-J[k--Ir- --_(_pt-kpr)][ b-I e+J_
o

-1

(_2)

+b

14



If we further assume that we are sufficiently far outside any inter-

action range _q , we can neglect 5 in the preceding relations and
res _q

sum up terms of equal angular frequency. For z _ O, the total field
thus becomes

_tot
" [ -k )r -j(__l+kp)_+ _

+ 3_ot -Jko r -J(_+l

= e booe +b+le P +b i e ..°

-I +I

+J_+lt Eb -J(_o+kp )r -J_+l _ ]
+e e

o+ 1 +b+l e +...o

(_'o -- -- "]- J__it_ -j -_ )_ -Jk_ir

+e e P +b i e (44)
°-I o

In order to satisfy the boundary condition at z = O, we must require
that

k+isin_ll+l = k s" + k s"o in@llo p In@llp

= k " - kpsin@l Ik_IS in@ll_l oSln@llo p

(h5)

Expressed in terms of the incidence angles in medium I, these relations

assume the very simple form

• = I (_oSin @ _+e sin@ I )
s _oo+_0op I p (h 6 )In@I+l o p

-i

Thus if %01 = %0I ' then %01+1 = %01p o o

-I

large and %0I _ O, then
p %0I+_--__ I p

-i

to note that %01+1 may differ in sign from %01o

-i

sin _01 = 0, Eq. 46 becomes
P

60

s" = o sin_ I (41-- 0)
In_l+l _o+-_p o p

-I

for all _ values. If _ is very
P P

It is particularly interesting to

If we assume that

(h6a)

15



From this relation it appears that sin _ is always smaller than

I+1

sin __i , but __i behaves in an entirely different manner. If _p lies
O --l

in the range @ (I + sin _I ) > _ > _ (I - sin _I )' then I sin _I I
o o p o 0 -l

> I, and a surface wave

)t- -! s x + o o p
o p c c-- - sin_ I

0 0 0 0 0 0

e

for z -< 0,is generated at the difference frequency in medium I. This

surface wave travels in the positive x direction when _ >
o p

> @ (I - sin _ ) and in the negative x direction when _ (I + sin _I )
o I ' o

0 0

>co > I.
P

When @ > _ (I + sin _ ), the difference frequency wave becomes
p o I

O

e

60 ¢0 -60 0

)t- --°si x + °-2---E - o z
o p c n@l c o co -_o

o o o p

for z _ 0. Since _ > _ (I + sin _I )' this wave leaves the medium at
p o

o

a negative angle, in the same quadrant as the incident primary signal

wave of frequency _ • At the degenerate parametric resonance frequency
O

= 2_ and _I = -101 , a peculiar phenomenon occurs that has previously
p o -1 o

been considered by the author (3).

Figure 2, sketched for _p < _o(I - sin _Io )' depicts how the three

characteristic waves, with frequencies _ and _ + _ , leave the pumped
o o -- p

ionized medium.

It should be added that if higher sidebands (that is, higher order

terms) had been considered throughout, we would have obtained the general

reflection laws

sin_ _ 1 (_ sin_ + ne sin_ ) (hg)
±n_ o I - p I

I±n _o p o p

16
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If we write E = ____(I/a)o)(_/_t ) from Eq. Ii, the electric field -- soY
far unmatched to the incident primary field of angular frequency co --

o

can be written

x) z
+J(_°t-k°x F -Jk°z

E = e |b e

Ytot h o o

-j(k÷1 -k )z
z Pz

+ b+le + b_le

-I +i

*k )z
+ J (m+It-k+l x) -J(k°z Pz

x _+I F_ e

+e _o °+IU

÷k )z
z Pz

_Jk+l z
Z

+ b+loe +''']

+J(e_It-k_ix x)
+e

o_i0

-j(k -k )z
o p

Z Z
e

+b e
-I 0

-Jk_l z

z +..,J (50)

for z > O. If we neglect the second order terms b+l and b of the= -i 0

-l +l

wave, we note that two different _+i and _-l waves appear in medium If.

The _ waves have components which, in certain frequency regions, have
+I

-l

the properties of backward waves, as will be discussed later in this

section. Nevertheless the group velocity, if referred to _ is positive.o'

Next, let us match the interior field of Eq. 50 to the exterior

field, still neglecting the second order terms b+l and b_l for the sake

-i +i

of logical convenience. If the incident primary field is written

+J(_ot-_Oo _)
(51)

E = EyoeYinc
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remembering that E and BE /_
y y z

frequency component), then b
o

o

must be continuous at z = 0 (for each

becomes

2k
O

0

b = E z E T (52)
+k Yo o, o°o Yo ko o

O Z
Z

in which T is the primary transmission coefficient. For the reflected
o,o

component we similarly introduce the primary reflection coefficient
o

k -k
O o

O z Z

Ro,o _ k +k (53)
O O

O Z
Z

Since no waves reach the layer from the outside at the sum and dif-

ference frequencies, the relevant field components in medium I must he

written (see Fig. 2)

+ j (_+lt-k,l x+k+l z)
O O
X Z

a,le

+j(__it-k io x+k I° z)
X Z

a_le

We therefore obtain

c°+l (b 4- )
b+l = a+ 1

o °+I o

o (b°-l+ b-lo ) = a-I

c°+---!l[(k + k ) bo+ + k b÷l ]eo °z Pz 1 +Iz o
- -k+l a+l

0
Z

](k - k ) b + k_l b_l = -k_l ° a..lo °z Pz °-I z o
Z
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These relations yield

k+l +k ° +k
o z Pz

b+l -- -b z - b T (Sh)
o o+I k+l + k+l o+i o,+I

o z
z

k_l ° +k -ko p
z z

z
b_l = -bo k +k = -bo To -I (55)

o -I -I -I -I '
o z
z

k -k -k

_+I +I z o z Pz _+I
_+i -- b -- -- b a (56)

o+i _ +ko k+l +I °+I _o o,+I
o z
z

CO.l k_l -k +k
o Pz ___-IR (57)

__i = b z z = b
°-I eo k-1 +k-1 °-I eo o,-1

o z
z

It is interesting to note that for k = 0 (nontraveling pump wave), these
P

transmission and reflection coefficients are the regular ones for a fre-

quency shifting network.

We are now in a position to write down the complete expression for

the traveling fields in media I and II. By Eq. 33 we obtain the following
results.

Medium I (z 0):

[e÷ j(_ t-k x-k ° z)

o o O o

E = E x z

Y Yo

+j(_ t-k x+k z)
o o o

o o
x z

$R e
o_o

00

+ T oR +I
o

2
0o
oo

..__ II 1
2 _

o p 2+__( l_n
po
2)-2n n cosA@ °

o p

+J(_ t-k x+k z)
+ O+l °+ 1

x z
e

(CONTINUED)

2O



2
6O

o3-I D °°II
-T R

o,o o,-I o3 2 co o3
o o p

1

O3

2- ----_(l-n 2)_2n n
o3 p o p

0

cos Aeo

+j(o3_it-ko_l X+ko_l z) i• e X z +,.. (58)

(_ outside 25o range).
o o

res

Medium II (z => 0):

+ j(_ t-k x-k z)

O O O

E = E T x z +

Y Yo o,o

2
o3

o3+I °°II

co 6o o3

o o p

• e
o3

2+--_(l-n 2)-2n n cos
o3 p o p A_o

O

+j(_+it-k+l x)
X

I +k ) z -Jk+l z1

-J(k°z Pz z

" e -To, +l e

2
co

o3-I °°II

_o co to

o o p

2--]_(l-n 2)-2n npcosAeoo3 p oo

+j (__it-k_l x)
X

e

-k )z
z Pz

-jk_l z ] }
- T e z

0_-I +''"
(59)

(_ outside 2_o
o o

res

range).
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FIG. 3. First order waves in medium If.
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If, finally, we introduce

_2
°_+I-I °°II I

o o p 2+__m---?-(l-np2)-2nn coSA_oo po

(60)

and remember Eqs. 44 and 45, then Eq. 59 can also be written

r'EEy = EyoTo,o o o I+_+i __I y W_I e P P

#-I - J(mpt-_p_))I + J (_°+It-k+Ir)
- _-+7 e - To,+ig+le

-J(_ t-_-l_) "I+ To, _l__l e P +.. (61)

From this relation it appears that the peculiar first components
of the sum and difference frequency waves, which may appear as backward
waves, can be considered as a traveling-wave modulation of the primary
wave. The remaining sum and difference frequency waves have completely
normal characteristics; that is, they satisfy Maxwell's equations for

the unperturbed medium, and thus propagate in medium II with phase ve-
locities corresponding to their frequencies. To further illustrate the
physical properties of Eqs. 60 and 61, Fig. 3 depicts in vector form the
various waves in medium II.

Let us now reexamine the resonance conditions on the basis of the

results so far obtained. It is not difficult to show that the following
relations hold:

2

c l_o +]_p 12 2o ( 2 ) " (l-n )(I+ )
k+l - P o

P

(62)

2

Oock121%12 2- k ) = (1-n )(1- )
o P o

P

(63)
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These relations finally yield the interesting general results (5 neg-

lected) _o

o_2 2
OOll/Co

b = b _ k+ -21 +k 12 (64)°+I °° "i ko p

/o 2
OOli o

= b _ 2 I_o__ 12 (65)b°-I °o k_l - p

which demonstrate that, as expected, the system resonances are traveling-

wave resonances (5). Hence

I-+Ibo+ I I

if k _±Iko-_p

(66)

In these relations one must be careful to use the proper signs. Our

= k + k and k =
boundary conditions (see Fig. 3) required that k+l x ° X Px _i x

k - k , which means that the resonance conditions should be written

o Pxx

k+l = k +ko p
z Z z

k -- k -k
"Iz °z Pz

(sum frequency wave)

(difference frequency wave)

(66a)

At the resonance levels, the traveling-wave modulations or associated

waves with propagation exponents k + k always travel in the same direc-
o -- p

tion and with the same phase velocity as the independent sum and differ-

ence frequency waves, which thereby are excited to very large amplitudes.

The associated sum frequency wave always travels in positive z di-

rection when k is positive. If k is negative and -k > k , this

Pz Pz Pz °z

wave appears as a backward wave.

When _ < _o' the associated difference frequency wave has the prop-P

erty of a backward wave if k > k When _ > _ , this wave appears

-Pz o p oz
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as a backward wave only if k < k In the resonance regions, there-
Pz °z

fore, the independent sum and difference frequency waves may be! generated

as forward or backward waves. To generate a forward wave at the differ-

ence frequency resonance, which in our specific case would call for

> k must be larger than k
p _o' Pz °z

In our isotropic ionized medium, the independent waves have the

group velocities c n quite independent of the original modulation,
0 +i'

--l

which may be effected on the pump or the primary wave. The situation

is different as far as the associated waves are concerned. In our spe-

cial case, if the primary wave is modulated, we obtain c n in the
O O O

direction. If the pump carries the modulation, we obtain c /[n +

C0p(dnp/d_)] in the k direction, o pP

A complete discussion of the total power flow in the first order

multiwave system would necessitate the evaluation of the b+l and b_l

-i +l

coefficients. Interesting as this may be, it is outside the scope and

aim of the present communication.

Traveling-wave resonance coefficients quite like those presented

in Eqs. 64 and 65 appear also in the nonlinear magnetoionic medium (5).

The resonance interactions in this much more complicated medium will be

discussed in a later scientific report.

4. WAVE REFLECTION, B(YHt ELECTRON DENSITY AND
ELECTRON VELOCITY OSCILLATIONS CONSIDERED

We must now resort to the complete wave equation, Eq. 12. Since

it cannot be transformed to a Mathieu equation, we neglect the possible
instabilities and write

_q e J(mqt bqo q*l q-I
= +b e+JX+b e -j_ +... (67)

where • is defined by Eq. 15.

We recall from Eq. 9 that _ of Eq. 12 can be written

(68)
= l+_cos_

and put

v v Cos (v) _)
= _llpCOS_ ; v = v sin_ cos_ (69)Pz P Px P p
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where _)(v is the angle that the electron velocity of the pump wave makes

P
with the z axis. We have used T as the general pump wave propagation

factor, although this is not correct (I) if both linear and nonlinear

pump wave quantities are considered. The ZhNii and the longitudinal ve-

locity oscillations, which are the nonlinear components of the high

power (pump) wave, generally have a T value different from that of the

transverse and linear pump wave velocity. For the sake of simplicity,

however, and since it is natural to treat separately the effects of the

former upon the probing or signal wave, we use the same T throughout and

later adjust the velocity angle _)" and T to the relevant case under

study, p

Remembering that

2

°°II (70)p 2, _

e qo C 2
o

and making use of Eqs. 62, 63, and 64 in Eq. 12, retaining only the linear

and v terms, we obtain after some rearrangement of terms the final
P

relation

6o co (v)
2 ,_ + o p ,1_ cos(_ -,; )

co - (_ _+_ )2 o II IIoo p o
b = b II o p (71)

o+i o 2co _ _ 2
o o p 2± _(l-n )-2n n cesAeo

-i o P o p

where

v n v
p o p (72)

,]_ = _
o c v

o phase

Comparing Eq. 71 with Eq. 33, we immediately note the important fact that
the denominator of b remains unchanged. Therefore, the electron ve-

locities of the °÷l pump wave do not influence the system resonances

(to first order), -i even though the magnitude of b depends upon
the former. O+l

--1

We next study the two velocity cases separately.
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Case I considers only the nonlinear plasma wave. As has been shown
by Rydbeck (I), we now have

(1) 2
1 vt

= _(_p,_ )cos_ (73)_ v oo
phasep/2 II

where vt(1)(_p/2 ) is the linear transverse velocity of the pump wave

(angular frequency _p/2), Vphasep/2 is the corresponding phase velocity

[= Co/(n)_p/2_ , and the nonlinear plasma resonance factor is

2

p 1
R(ep,m ) = 2 2 = 2 (7h)

°°II _ -m n

P °°ii P

Furthermore

_(v) = (75)
IIp _llp

and

kp --c-_E(n)_p/2o (76)

It should be added that

v

_.E - n (77)
v

phasep/2

That is, by Eq. 72,

v

_o =-_
Vphase

o
= 11 ('n)

n
o

ep/2

(78)
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These relations yield

to o3 n

2 +_I+ P p o 'cos

¢°°°II (_Oo_+¢o)2 (n)_ /2 Ae°
b = b _ P P (79)
o o 2 m _ m

+I o o p 2±___p_p(l_n 2)_2n n cosA_o-I _ p o p
o

when _ _ _ . From this relation it is evident that it is not permissible
o p

to neglect the nonlinear longitudinal velocity produced by the pump wave.

The effects of ZkNii and v are of the same magnitude, even though theP

system resonance is not displaced. As expected, it appears that in the

case of transverse pumping, that is, when Z_0° =_+_/2, the effect of ve-
locity pumping is zero.

Case 2 considers only the transverse linear pump wave velocity. We

now have _ = 0 and _[)" = _II (_)y/2. Assuming that the primary wave

P P

angular frequency now is _ , instead of _ /2 as in Case I, we obtain
P P

b

2 (1)

_oo I vt(_ )
= b I p_

o41 o ° (_ +_ )2 Vphas e
o- p p-I

no 1

--sinA_ o (80)
n e 2

P 2+ P(l-n )-2n n cosA_ o
p o p

0

when _ _ e . Here we note that for transverse pumping (Z_0° = 4Wr/2) --p o

that is, the pump wave and the signal wave crossing each other perpendic-

ularly -- the interaction will be approximately at a maximum. For longi-

tudinal pumping, the effect is zero, as expected. Case 2 is, of course,

much more effective than Case I, since b is here proportional to

-l

vt(1 )2.
)/Vph p instead of to (vt(1)/Vphp/2

Since vt(1)/Vph p is always a small quantity unless one has airborne

pump transmitters in or very near to the ionized medium, it is obvious
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that b and b are always extremely small in practical ionospheric
O_l O--1

cases, except near system resonances, of which there could be a number

in the magnetoionic medium (5). The resonance effects naturally depend

upon the collisional losses of the electrons, which are very small in

the exosphere. A brief survey of the effects of collisional losses has

therefore been made in Section 5.

If at any _ or _ the medium becomes unstable (in our thinking we
o p

are not now limiting ourselves as to the nature of the various n values),

only a slight triggering, for example by b , would cause the medium to
o
o

go into self-oscillations and to radiate, assuming that the pump wave

energy input overcomes the collisional losses of the system. For this

case a complete transient analysis of the system becomes necessary. It

should therefore be emphasized that our results, as expressed in Eq. 71

for example, are steady state results for a medium that is infinitely

extended from z = 0 in the positive z direction. Our present results

thus summarize infinitely extended interaction effects, what happens

after "infinite" time. It is the purpose of Section 6 to show that

intense resonances of the type found here for the infinite homogeneous

medium are appreciably reduced, though present, in an inhomogeneous

medium.

A few remarks should be made concerning degenerate parametric reso-

nance. Whenever n = 0 or n = n cos 210°- (the latter condition will notp p o

be attainable for an isotropic ionized medium), the denominator of b
o
-i

is zero for _ = 2_ . If we assume vertical incidence pumping (_I = 0),p o
P

we note from Eq. 46a that _I = -_01 The pumped ionized medium then acts
-I o

as a parametric amplifier, with the peculiar and interesting property that

the amplified signal (angular frequency _ ) is always returned in its in-
o

cidence direction. The reflection medium now acts very much like a

degenerate-type reflection cavity parametric amplifier.

5. EFFECTS OF COLLISIONAL LOSSES AT SYSTEM RESONANCES

To estimate the pump power necessary to generate appreciable non-

linear resonance effects, one has to consider the effects of electronic

collisional friction at or near the resonance level. If we introduce a

constant collisional frequency V, we obtain

2 2

2 °°II 2 °°II

n_l = 1 0 _ (_0-Jv)__l(m_l_j_ ), and n = I- o (81)

if the medium is isotropic.
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If we also, for the sake of completeness, consider an attenuated

pump wave, we write instead of Eq. 1

z
ANII -kz --o

N = _e i coS(_pt-kp r)

°I!

(82)

where k ° indicates the real part of k .
P P

wa_ the only one we will study in what follows,
P

ponen_s k ° + jk and k ° . We can also express k
Pz zi Px zi

of the pump wave, defined by the relation
P

For the difference frequency

thus has the com-

in the loss angle

k = k ° (1+ J6 )
P P P

(83)

and obtain

k s

z i

k °

P" (cos2@ll >>6 2) (84)

6p cos_ll p P P

To make an approximate study of the influence of losses at or near

resonance, we next introduce Eqs. 81, 83, and 84 in Eq. 63. The first

order result (V2 and 52 terms neglected) for the difference frequency
P

wave then becomes

F

_2 _o _nO2
_ o I _ (I )-2n o o-I m 2 - _ p o n COS

o P 1-n ° L o P

P (85)

_°°II m Pz o --P-PIv ____2 - 26 n
-J ----2-- _-- _ -_ o P P _o

eo p p o k °
z

k °
o

z

o
k

P
z

3O



[c°s2 _II >> 52p' c°s_ _II >> (V/too)2] where k °o denotes the z component
p o z

of the real part of ko, which is labeled k °o' and so on. The resonance

value of O,V_---thus becomes
o

o

2

e. o ) oo_ m( res l-j II I . h (85a)
o _g 0 2

p l-n
0

where

k ° 2 k °

(o ,.) o.o(o)= v p -26 n _ I z

-_ k o P P_o _p o 2 ko (85b)

°z °°II Pz

O2
It is to be remembered that at least for small _z , 5 n

tional to this quantity. °°II P p
is propor-

If we next introduce Eq. 85a in Eq. 27, and this is quite an ap-

proximation, we find that

2
_0

°°II
I

(_o)res _ 2 02 _2+A2 (86)
p l-n

P

By Eq. 30 we furthermore obtain

(87)
(bo_l)re s _ -Jboo A,%2+A 2

When losses are large, b is proportional to _/22_. Since the order
o

-1

of _ iS V/COO, B must approach this value if one wants to obtain strong

resonance effects.
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Let us now look at the possible growth of waves in the instability

region, remembering that the discussion is highly approximate since no

transient analysis is used. By Eq. 21 we can write

o °+O I + j2nuTT 0 = e e b e (88)
1 On

m= ,,.,,.oo

At the resonance level this approximately yields, for its difference

frequency component,

2
00

ooiim o

oo 2 2 A A2+_ u °

p 1-n °

(TTo )res _ e P b 0
1 -I

-k z-j2u
z. o

e 1 (89)

where

u = _(e t-_°_)
o p p

(90)

If losses dominate, that is, if pumping is weak, the wave amplitude grows

with time like

A(l-n 0 )
2 h 2 / _Op P

exp O_ooii

If _ is positive, the difference frequency wave, in this very approximate

second order form, slowly grows with time. If A is negative, its ampli-

tude decreases with time in this approximation. But Eq. 89 cannot be

made to satisfy any stationary boundary conditions.

2
o

For the isotropic medium, 1 - n is proportional to _2 Its
P °°ii

frequency dependence, however, is a function of the type of pumping that

is used (see Cases 1 and 2 of Section 4).

If A could be made equal to zero at the resonance level, very strong

interactions would result, even if the medium is lossy. One could then

speak of complete traveling-wave resonance interaction. If we neglect

pump wave losses, such an interaction would take place at degenerate

parametric resonance (_ = 2_o) if k ° = 2k ° that is, if n ° = n °
P Pz o ' Pz oz z
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Since degenerate parametric resonance is possible in the isotropic medium
only if n° = 0, we have to require pumpingas described in Case i of

P
Section 4 and that _I = 0 = _o' a truly degenerate case because the

P
primary pumpwave frequency now is equal to _ /2 = _ . But remember

p o

that Eq. 85b, on which we based our discussions, is valid only when

>> 5 2 and cos 2 >_ 5 2
c°s2 _II p _II o"

p o

A more detailed study of the behavior of A under resonance conditions

lies outside the scope of the present investigations. Such studies should

be especially interesting in the case of the magnetoionic medium, for

which the refractive indices vary widely with the medium parameters.

A few remarks should be made concerning the pumping power necessary

to obtain observable dynamic nonlinear interaction effects. Since _ or

the equivalent velocity term in Eq. 80 has to approach the magnitude

V/_ , one finds that in the upper ionosphere, pumping according to Case
o

2 could be done by strong ground stations with pulse power of about 50

kw and an antenna surface of approximately (40_) 2 . Pumping according to

Case i would at present have to be done by satellite- or rocket-borne

transmitters.

6. DYNAMIC NONLINEAR REFLECTION FROM A

PUMPED INHOMOGENEOUS IONIZED MEDIUM

We finally approach the much more difficult problem of dynamic

nonlinear interactions in an inhomogeneous medium. What is the nature

of the nonlinear resonance in such a medium, and when does actual radia-

tion take place at the sum or difference frequencies?

For obvious reasons our study will be limited to a very slowly vary-

ing medium, in which partial reflections of the various waves can be

neglected in the main interaction region, where 104_--o I _ I. We assume

O

that the electron density is zero for z = 0 and increases monotonically,

and very slowly, from this level in positive z direction. Since we will

primarily limit our study to an analysis of the difference frequency

wave, when _ > _ , and of its possible radiation in the forward or
p o

positive z direction, we assume that k > k in the interaction region.

Pz °z

It will later be shown that our results can easily be extended to the

equally important case of backward radiation, for which k < k

Pz °z

To make our discussions more general we do not assume special rela-

tions between no, np, and the medium parameters, except that for conven-

ience I - ns is assumed to be positive and proportional to _2 when

P °°ii

<<_.
°°ii P
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In Fig. 4, which approximately depicts the situation, z is the
o

level of resonance interaction for the difference frequency wave. That

is,

( ° :IZ=Z
O O

Figure 4 is based on the following assumptions:

k >k

Px °x

co > co k > k , and

p o Pz °z

From Section 4 it appears to be unnecessary to take special account

of the electron velocities from the pump wave in order to make an ap-

proximate study of the interaction, since they do not influence the

resonance condition. Furthermore, since we are dealing with a slowly

varying medium, we may let the primary or signal wave have the approxi-

mate form

+j(_o%- /'r_od_)

e (91)

Similarly, the electron density fluctuation may be expressed as

ANII

Nil
= Dcos(_Opt-/r_pdr)

(92)

For definite reasons we have not included the usual WBK coefficient

i/k_n. Rydbeck (4) has shown that in a multiwave system the WKB-type
--A

approximations assume a very different for_ owing to the fact that energy

is now exchanged between a group of waves. Under these circumstances,

and since we wish to carry out only a qualitative study of the interac-

tion in an in_homogeneous medium (which actually is a very complicated

problem), the best and most adequate approximations for our present

purpose are those represented by Eqs. 91 and 92.

Neglecting terms like _02 /_z, we now make use of Eq. 23, which

may be written °°II

( d2 )-- , o TFo = -(20:]_oos2 )%2
du 2 °o 2

(93)

where

I /r_pdy )
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FIG. 4-. Dynamic nonlinear wave interaction in a plane

inhomogeneous ionized medium.
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If we introduce _ = 281 cos 2u, and _T(1)o

2
perturbed primary wave as defined by

representing the up-going un-

(95)
o 2

where _ denotes @ , the approximate solution of Eq. 93 can be written as
O O

O

b (I) _(I) du )]2

- o 2 -

u I u 2

Here b is the amplitude of the unperturbed primary wave, and u and u
O 1 2

O

must be adjusted to fit the actual physical conditions, such as that

there is no down-coming primary wave.

Since the linearly independent second solution to Eq. 95 can be

written

q o

u

2 02 [ ) 2
(97)

,,vhere ,_ iS a constant, _T

pling" integrals: 02

can now be expressed in terms of two "cou-

u

u 3

_du

u

_' '02 j 2 02 _d

u I

(98)
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If we make the approximation by writing

du
(99)

which yields

(lOO)

the total field by Eqs.

form,

b o o°I

*o-b *o =
°o o b-_o

16 and 21 becomes, in appropriate in_homogeneous

u
z

r 3

e z

(

r

e'JL 2-J<odu__ +_[_-1t- (ko-kp)'ar_- e

-V_o*X

u
zI Uz

:u : ]I1 '-J 2dUz -J 2('_°-1)du
• -e z +2je Z.Q (Ioi)

where

u
u z

z / du z du

+j 2(_F_-o-I)Q = e

11
z I

and

(lOla)

u -- - -_2 n z = - -_ k
z Pz Pz

(lo2)
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Relation 91 has been deduced under the assumptions that all parame-

ters vary quite slowly and that the main interaction takes place for only

the difference frequency wave. If the reverse were to take place, Eq.

i01 could readily be used with the proper permutation of signs.

If no sum and difference frequency waves impinge upon the layer

from the outside, we put u = +j_ and note from Eq. i01 that the ampli-
z
3

tude coefficient of the sum frequency wave gets the "correct" value b

for the slowly varying medium (without strong interactions at any point).

Similary, we find that u = -j_.
z
l

Next we have to evaluate the integral Q in Eq. 101. To that end we

introduce the following linear approximation, which we assume to hold

through the main interaction region:

_o =-_ I +( 8_°)Su z u (u -u ) _ l+_(u -u)z z ° z Zo (103)

z
o

where _ is a positive quantity if we assume e_o < i for z > Zo. (Note:

2
n is assumed to be less than I throughout). Furthermore, according to
P

our assumptions about n_, _o is a large quantity at or near the layer

boundary, where n 2 is assumed equal to 1. Now Q becomes a Fresnel integral
o

(with u = -j_):
z

1

w w
z z

Q = _+_ e-jw2dw = I_ (f e-jW2dw+_-_e-J_/h)o (104)

where

) (105)
Z ZO

That is, w is positive for z > z
o

If we next make use of the asymptotic expression of the Fresnel

integral for large lw I values (w >> I, w << I),

W

Je -jw2 [e /4±j 2 w_)]
dw = * _ -J _ 1 e -jw *0(

- 2 _w

o

(Io6)
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we obtain

1
2A/-uuwe -j _/4+je -jw2 Cw>) l)

2

je -jw (w <<I)

(106a)

Remembering the resonance conditions (Eq. 66) and that Eq. 45 must

hold throughout, we now obtain the following final approximate results

if we assume that lw I .is large at the top and bottom of the interaction

region:

z < Zo, at the bottom of the main interaction re_ion

r

_o-_o b -_ b I o p I
o oo o o _+I

o

r

- e ._o__lj

(wot  I

z > Zo, at the top of the main interaction re_ion

%o-_o bo o
o o o

r

-IV

r

_ e+J[ -It-f(7o- p I
a/_--1

o

8u
z

r

i _- _I_)}

+J(__l t ko_ 1
e

(1o8)
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It is interesting to note that the emerging difference frequency

radiation, the last term in Eq. 108, has finite amplitude when it ap-

proaches the top of the interaction region. Apparently e _/[2(_--J_Uz) z ],1
o

the ratio between the radiated and the primary field, is a first order

measure of the nonlinear radiation efficiency.

The amplitude of the emerging independent difference frequency wave,

which is a solution of Maxwell's equation for the unperturbed medium,

thus tends to infinity, to first order, provided that

and that, at the same time, the optical width of the interaction region

at the difference frequency is so large that

)z
o

(u -u )

Ztop Zbottom

>> I

The layer must be infinitely wide and In I _ 0, which agrees with our

Pz

original assumption that there should be no partial reflection of any

wave within the interaction region.

This throws some interesting light on our relations of Sections 3

and 4, and clearly demonstrates that they represent a stationary result,

after infinite time, for the infinitely thick homogeneous medium If.

Only a very extended and monotonically varying medium would exhibit

strong nonlinear signal pump-wave resonance interactions. The conditions

in this respect are therefore entirely the reverse of those for strong

partial reflections, which is an interesting observation. That any

boundary discontinuities, like the one between media I and II in Sections

3 and 4, will produce sum and difference frequency radiations is, of

course, an entirely different matter.

The expression for the total phase of the radiating difference fre-

quency wave is very approximate. A more accurate phase determination,

which is outside the scope of the present communication, would require

a more stringent solution of the original wave equation for the perturbed

irahomogeneous medium. A first order ray tracing of the radiating differ-

ence frequency wave is possible, however, on the basis of our present

results.
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II. DYNAMIC NONLIN,_A_ _ECTROMAGNETIC WAVE PROPAGATION

AND HARMONIC RADIATION IN MAGNETOIONIC MEDIA _'"

I. SUMMARY

The preceding paper considered nonlinear wave interaction and its

associated wave generations, at various combination frequencies, in an

isotropic ionized medium. To make the results as general as possible,

the interaction and the nonlinear reflection laws were expressed in terms

of unspecified refractive indices. Among other things, this made it pos-

sible to express in vector form the conditions for traveling-wave

resonance, permitting a study of the interaction between two waves that

have arbitrary and different angles of incidence upon the medium, such

as the generation of sum or difference frequency radiation.

This paper extends the nonlinear propagation studies to a magnetoionic

medium, the limitation being that all wave normals are assumed to be

parallel. The general theory involving arbitrary wave normals is dealt

with in the third paper of this group.

It is shown that, as expected, traveling-wave resonances occur in

the magnetoionic medium, not only between waves of the same kind (for

example, between waves of ordinary polarization) but also between waves

of opposite kinds. From the viewpoint of nonlinear interaction there

is not much difference, at least in principle, between the ordinary and

the extraordinary waves. It is also of interest that the second order

nonlinear waves are characterized by two different kinds of polarization,

which become equal only at traveling-wave resonance.

Traveling-wave resonances should be very efficient in the "topside"

ionosphere, where both losses and electron density gradients are small.

Most of them take place in regions where X > I - Y, in the usual notation,

which are accessible to both types of waves from a "topside" sounder.

Interaction instabilities are likely to be strong in regions near or close

to fourth reflection level conditions, where the electron velocities be-

come very large, especially for y2 = 1, and y2 = i - X. Parametric

harmonic pumping of cyclotron-type resonances is particularly probable,

in agreement with recent experimental results.

Under certain conditions, second harmonic or echo generation is

possible at or near the combined fundamental and second harmonic reflec-

tion levels X = i, 2, and 4. Similar levels can be established for the

higher harmonics.

The author believes that if future "topside" sounders are equipped

with harmonic sweep recording devices, our knowledge of dynamic nonlinear

"topside" phenomena will be greatly extended.

Scientific Report No. 186, Ionosphere Research Laboratory, The

Pennsylvania State University, June 1, 1963.
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%
The results here reported can A_i_'obe used to study and evaluate

parametric amplification, or second harmonic generation, of exospheric
whistler modes.

2. ELECTRONVELOCITIESANDDIFFERENTIALSPACE-CHARGEDENSITYOFLINEAR
_GNETOIONICWAVES

Let us assumethat the static magnetic field, of strength Ho and
cyclotron frequency _H, is oriented with respect to the wave normal (z
direction) and the coordinate system as shownin Fig. I.

X/

6OT

/ i

//

I/7 Z

>y

(direction of wave

normal, angular wave

frequency _q)

FIG. I. Orientation of the static magnetic field.

If we let E = E (I) and so forth, denote the linear field of angu-

Y Yq'

lar frequency _q, the transverse linear electron velocities can be

written (I) as

2 eB(I)
l-n q_ ____R____z_

V =

qy Xq j_qm

2 eE (I)

v ( i ) - I -n]_._ qx

qx Xq j_qm

(1)

where n is the refractive index of the wave in question, and X = _2/cu2
q q P q

in which co is the angular (electronic) plasma frequency of the ionized
P
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medium. Introducing the cyclotron, frequency• ratio Yq = n_'J_q' its trans-

verse and longitudinal components YT = Y sin e and YL = Y cos _ andq q q '
and the plasma resonance factor q q

R = I (5 --v/co ) (2)
q l-Xq-j6q q q

%he Appleton-Hartree expression for n2 assumes the convenient form
q

2 X

l-n = q

qo I 2R 7/1 +

x l-j6q- _ YT q _ V 4 YT hR 2 YL 2q q q q

which demonstrates the influence of the transversely coupled plasma

oscillation upon the propagation of the linear wave.

The longitudinal velocity component can be written as

(_)
2 eE

I -n qy
v(1) --_T R ------q-
qz q q Xq co mq

(3)

(4)

and is thus in phase with E "I( ) for a lossless medium.

qy

relation can also be expressed as

By Eq. I, this

v(1) _(I)
qz = -JYT R

q q qy
(4a)

Consequently v (1) and v (I) are of the same order of magnitude (YqT _ 0)
qz qy

except near the plasma resonance level, where R may be very large. In
q

this region, therefore, v (I) may give rise to appreciable nonlinear
q

Z

effects, provided that 5 2 << i, even if the transverse velocities remain
small, q

The a-c space-charge density can be written (I) as

v(1) v(1)
Pl AN

q = q = qz _ qz

N Co-7_ qPo o Vphase
q

(5)
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where Po -eN , N is the mean electron density, and c is the electro-
O O O

magnetic velocity in vacuum. By Eq. 4 we can now give Eq. 5 the alternate

and in this case important form:

Pl [ v(1) JPo q qv ph
q

(5a)

Thus 01 is zero when YT = 0 (longitudinal propagation) and when R n = 0.
q q q

Relation 5a furthermore shows that as far as the charge bunching is con-

cerned, the measure of .nonlinearity is R v(1)/v _ , and not v(1)/v ,_

q qy pnq qy pnq

From Eq. 5 it also appears that Pz /Po may become very large for the
q

extraordinary wave (the Z component) at or very near the plasma resonance
level.

According to Eqs. I, 4, and 5 we can regard the magnetoionic wave

as composed of a transverse electromagnetic wave, represented by v (1)
Y

and v (1) and an associated plasma wave, represented by v (1) and Dl
X ' Z '

coupled to each other by the transverse magnetic field. This plasma wave

disappears when _ = 0, and therefore does not appear in the linear theory,

when the propagation is purely longitudinal. The plasma wave may become

very large at the plasma resonance level, and is physically instrumental

in producing the triple split coupling.

In the linear magnetoionic theory we consider only the linear con-

density 0o_ z)- At the plasma resonance level, however,
vection current

we may also have to consider the nonlinear term (z)_(1) which produces
0q q ,

a second harmonic. The moment the ionized medium drifts, we must also

component (Z)_o, where _ is the drift re-
deal with the linear drift

Dq o

locity. Different types of waves, such as space-charge waves, may then

be generated in the medium. These are discussed in the following paper

on electron stream whistler mode interaction.

To make the linear field survey complete, we should perhaps recall
that

H(1) n (1) H(1) n (1)
= -_ E = -Z -_ E

qy Zo qx qx o qy
(6)
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and

E( )IE(1) = S(1) (7)
qx qy qo = JQqo

X X

= -J YL

1

q _ IYTq2_qi_¼YTqhRq2+YLq2

2
l-n

= R 2q (7)

JYLq q l-Rqnq (l-j5)
q

which is the linear (or first order) polarization ratio. The polarization

of the nonlinear field components is generally different from S (1) (see

Eq. 33 and the preceding paper), q

In the study of nonlinear effects one is naturally interested in
(_)

regions where the linear velocity fields, and for that matter also Pl

generated by a high power wave such as a pump wave become very large.

v(l _l )We have seen that ) and Q behave in this manner at or near the
Z

plasma resonance level, whereas the other components remain small.

It appears from our previous relation that there is another and

very important resonance level, when al___!l velocities and the a-c space-
charge density may become very large in a medium with small losses.
This is at or near the so-called fourth reflection level where In21-_ _.

' q

It is well known, as is easily verified by Eq. 3, that this "resonance"

occurs when

I-X

2 = YR 2 _ q2 e (8)
Yq q 1-XqC0S q

or expressed in Xq, when

2
I-Y

X = XR 2 q 2

q q l-Yq cos e q

(8a)
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When X is small, Eq. 8 approximately yields
q

2 _ n2e
YR " I -X siq q

q

which is very close to "cyclotron resonance," especially when e is small.
q

The latter case is especially important when one considers the excitation

of cyclotron harmonics, or near harmonics, in the "topside" ionosphere.

Equation 9 can also be written as

(m 2-_H2 ) (m 2__ 2) mH2 _ 2sin2 e _T 2 2= = oo (9)
q q P P P

cyclotron plasma coupling

osc. term osc. term term

which shows that the fourth reflection resonance can be considered as a

transverse coupling between the plasma and cyclotron oscillations.

Let us summarize the results of this section. As far as the linear

driving forces are concerned, we have two important resonance levels in
the ionized medium:

2
I-Y

q
= I , and X - 2 2

Xq q I-Y cos 8
q

Besides these resonance there are, of course, nonlinear traveling-wave
resonances. These will be discussed in Section 4.

3. NONLINEAR DRIVING FORCES

If we retain the nonlinear terms in the equation of motion, we have

]By e _ ,+ e [ {_o+'_) X T - ('v'V)va-E - m

_ e _ + _H X _ + _" (I0)

where P is the nonlinear force on the oscillating electrons. These are

assumed to have zero drift motion in the linear theory (a stationary

magnetoionic medium).
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For the moment, consider only self-nonlinearities (for example,

with a powerful primary wave). The second order force term can be

written in the instructive form

T(2) = _ I ;(i) 2
grad I I

t

! g(1)d@_(I) + m (11)

Since -go _t - curl E, this relation can also be written as

= - -_ grad + - HI jj (lla)

where _i) is the a-c cyclotron frequency. This yields the following

l

basic relation for the isotropic nonlinear medium:

_(2) : _ ! grad Iv(1)l 2 (H =0) (11b)
2 o

In this case the nonlinear force (second order) is proportional to the

gradient of the first order kinetic energy of the oscillating electrons.

If we next assume that two waves are present in the medium (q = I,

2), it can be shown (i) that _(2) has the following components (V = 0).
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£42)_
Z

1 8

2 8z
•I- ÷V

_ 1 l_nl 2 h Yl Xl

£(2)
Zl

1 8
2 8z x2 I-(1) 2 41)2]}

+____--_ +_

l_n2 L Y2 x2

8z I z2

742)
z 2

xl [a v(I)Yl v(1)

1-nl 2 L 8z Y2

a_(1) ]_t v(1)
+ 8z x 2 j

.avI) av(I) )]X2 Y2 v(1), x2 v(1

i_n2_ az Yl " a---T53

?(2)
z12

J

(12)

p(2)
Y

av(1)

2 zI 8z
xl ) _ v(1)l _ -_" z

I -nI 2

j "-.

p(2)

Yl

_ v41)
zI

av(1)
Y2

8z I

av(1)

x2 I _ v (1) Yl

l_n2 2 _ z 2 8z
I

?(2)
Yl2

p(2)

Y2

I I -_ 2/)
J

I -n I

J

(13)
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p(2)
x

I v(1)
2

zI

av(1)
xI

_z I Xl I
l_nl_- ) - -_ v

V
J

av(1)

(1) x2 (z2 8z I

V

p(2)
x 2

X 2

I -n 2

J

_ v(I)
zI

av(i)
x2

8z I
-- V

1 -n 2 2

(1)
8v

x i

_z 1

X1

2

1 -n I

Y

p(2)
x12

(14)

Complex values of the electron velocities cannot be used in these rela-

tions. The real velocity values are easily obtained from the various

field relations in the previous section.

For the ionosphere it is usually sufficient to use the second order

relations, Eqs. 12, 13, 14. In a physical plasma device this is not

always permissible, but the second order relations are still very useful,

since they can be applied to demonstrate how and when wave instabilities

tend to build up (see the preceding paper).

It is important to note that the transverse nonlinear forces p(2)
Y

t %

and p_e_ disappear if v _l/ = 0. When all waves travel longitudinally,
X Z

1,2

there are second order nonlinear driving forces in the longitudinal or

z direction only. This case is therefore simpler to treat, but it is

much less interesting from the interaction point of view.

f _
and _2J terms contain the second harmonic forces, of

The PI 2

angular frequencies 2_ and 2_ , and a nonlinear static force term.
1 2t % F %

Since v _lj differs in phase from v _l) by +7r/2 (V=0), it appears from
z y -

Eqs. 12, 13, and 14 that there is a second order static nonlinear force

term in the y direction only. As the total direct current must be zero

in the infinite-plane medium, we must require that the mean value,
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denoted by < _ , of the second order convection current be zero. That

is,

* : 0
2 2

2

(15)

which, by the _ and Pl relations of Section 2, yields

I _,(1) 2_1<v(2)) ,, _R]_.T.Q](]-) 1_ Y_x
x12 2 _ 2 2 Vph I

2

<v(12)>__v(x12)>R_YT/Q{ I )
2

2 2 2

(16)

<v(2)> - o
Yl

2

when V = O. Since < v > is always positive, the higher power wave, to
Z

1

2

second order, pushes the medium ahead. There is no transverse drift,

and it should be noted that < _(i)> has the same direction in the x-z

plane as the linear electron velocity.

From the second order equation of motion we next obtain (indices

I and 2 dropped)

_(Exe( 2 )> -- -a_L('V(y'2 )> + _'P(x2 )>

m- y L x Y -
(17)

__<E(2)>._ <v(2)> _(2)>
m z T y +<z
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This yields

<E(2)>__ o = <_,(2)>
x I zI

2 2

(1) 2

e _E(2) > Iy Q_I) I } ½1Vymax 1_o___ _-_ __,,_[_ -T_]_ _ _ v_ __

Thus a static nonlinear electric field is generated in the y direction

only. It has the right magnitude and direction to permit the electrons

to drift in a straight line in spite of the presence of the static

magnetic field.

In a system with one high power wave only,

p(2)/p(2) av(1)_//a'_(1)_ x y (19)
x y 3z 8z

Besides the nonlinear force on the electrons, we must also consider

the nonlinear a-c convection densities in the system,

(2)
i
a = p(1)-9[l)+Pll 12(I)_I)+p(I)_I)+II P12(I)_[I)-_i(2)>--a

(20)

which also contain second harmonics and sum and difference frequency

terms.
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4. NONLINEAR WAVE EQUATION

For the second order nonlinear fields, Maxwell's equations can now
be written as

p 2E-2-( _ _ 1

e x 8
o

3t x

e y _ 8t (21)
o y

8 2 E(2) 1 8 _2)+7(2) 3
8 t 2 z - eo 8t Zb z

where

2 1 8 2 2_ + ____
Pe #o eo 8z2 8t 2

(electromagnetic wave

operator in vacuum)
(22)

If we introduce the additional operators

2

Pe
m

2 8 2 2
= -- + G0 (plasma oscillation

P 8 t 2 P operator)

2 2
= p + co

e p
(electromagnetic wave operator for

the isotropic ionized medium)

(23)

and make use of the various expressions for the _(2) components of the

previous section, we obtain (after some transformations) the following

nonlinear wave equation for v (2)"
Y

y = Pp mLPe2_x + Peru at - eTPem pe2_z "-_d (24)
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where

2 (2) 2
_x = Pe P -cox p

8W (2)
X

8t

= P 2p(2) _ _ 2
_y e y p

 w(2)
Y

8t (25)

_ 8 2 p(2) _ 2
_z 8 t2 z - p

8W (2)
Z

8t

Here W(s) W(2)
x ' y

, and W_2_ are the x, y, and z components of
Z

9(2) = 1 y(2)
Po a (26)

and

2(22D = Pem Pp Pem
+

2 2} 8 2_T Pe _ + _L 2 2Pp Pe h (27)

We furthermore obtain

(2)

2 8Vx 2v(2) + @yPem 8 t = - _LPe y
(28)

8v (2) _2v(2)
2 z y

Pp St-- = _T 3t 2
+ *z (29)

(3 ( 3
since v _2j is also related to v _2_ by the following relation

y x

82 (2)v 8v (2)

2 2+_T2pe2 ) y 2 2 xPp Pem 8t 2 - _LPp Pe 8t

2 2!h
- _TPe @z+Pp 8t

(30)
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one is induced to introduce the two "symbolic" second order polarization

ratios (compare Eq. 7)

(2) IPp 2pem2+_T2pe218/8t

S1 = 2 2 (31)

_LPp Pe

and

2

(2) = - °_LPe (32)

Sl Pem28/St

By Eq. 27 it can immediately be shown that

S I I 2 2 h (33)

eL Pp Pe

The two second order polarization ratios are therefore equal only when
D = 0, that is, when we have resonances in the system.

By our previous relations the wave equation for v (2) now can be
X

written as

x 2 2+mT2 2 82
D 8t = Pp Pem Pe 8t 2

2 2 8%y _L_TPeh% z
- eLPe Pp 8t +

(34)

which by Eqs. 31 and 32 transforms to

2F 2.(2), + 2.(2) 8,y]Dv(2)x = Pp _LPe _I _x Pem _2 8t

_ 2 2 S )#z (35)_TPem Pe _2

This relation demonstrates the meaning of the two polarization terms:

S(2)l applies to the nonlinear _x forces, and S(2)2 to the _y and _z forces.

Therefore v(2)/v (2) = S (2) = S (2) when we have resonance in the system.
x y 1 2
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The wave equation for the second order longitudinal velocity finally

becomes

8 v (2) 8 2 3

( 2 *x 2 8 *y)z - _T _L p t 2 +B 8t e 8 Pem 8t 3

A
f

+ Peru 3t 2 + _L p @z
(36)

where it is of interest that _ annihilates the longitudinal magnetoionic

modes.

From Eq. 27 we find that D can be written as

2

pp2D = [p pp _ _- pp O_p

_T 4 2

pp41- pe4(-_ 8t 2 _L2
(37)

whence we symbolically obtain

2 D = pp2 I + ]_pe 2 _T /2 2 8 2
Pp 2

Pp Pp

J

D
O

Ordinary Electromagnetic Wave and Plasma Oscillation Operator

2 2 14- _-- + _ + - _-- mL

• Pp Pe PP p _-t Pe PP 3t---2 -

D
x

Extraordinary Electromagnetic Wave Operator

J

(38)
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and

(38a)
pp2D = DoD x

Note that D annihilates both an ordinary wave and a plasma oscillation
o

(p_ = 0), whereas Dx annihilates only an extraordinary wave.

Subject to proper boundary conditions, D D _(e) = 0 yields the
ox

linear transients of the system and its self-oscillations (V = O, _/_z =

O) X = co2/_e = 1 + Y, I, and 1 - Y.
P

If we assume that two high power waves, represented by _(z) and
1

_(z) are present in the system, the nonlinear driving forces _x' _y2

and _z may contain terms with the propagation factors

exp (2_it±2_inlz/c o)

exp (2_2t_2_2n2z/c o)

exp [(@i+_2 ) t± (_inl+_2n2) z/c o]

exp E(_I+_2 ) t_+(cOlnl-o)2n 2 ) zlc 9]

(39)

exp [( a)l-(S2 ) t+_( a)Inl-co2n 2 )z/c O ]

exp [(_l-O_2)t+_(_Inl+e2n2)Z/Co]

where n = n(c0z) and n = n(e ). It should be remembered that a primary
1 2 2

high power wave is defined as a "pure" magnetoionic mode. Two different

magnetoionic modes have to be treated as tw____oprimary waves, even if their

wave frequency happens to be the same.
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According to Eq. 29 the "effective" refractive indices of the second
harmonic driving forces are 2n(_) and 2n(_2)" The effective refractive

indices n÷ and n_ of the sumand difference frequency waves become

n+

n ---

_ 031nl-+_2n2 _ _Inl+-m2n2
J

_i+_2 _+

031nl_2n2 = _InlW_2n2

(40)

where the upper signs correspond to the situation that both primary waves

propagate in the same direction, and the lower signs to propagation in

opposite directions.

Next let us introduce the self-explanatory operator equivalents

2 2 2 (4_)
Pe_ = _±2(n* 2"I) Pem+ = Pe 2+=

_ - _ i P

and

2 2 2
= 03 _ (o

Pp+ P +-

(42)

Making use of these relations and Eq. 40, we can prove that the following

important relation holds,

2 2

De = -Pe_ Pp_ P± (43)

where

- P 1-n o (__+) I- l-nx2(_±) l-n_

(44)

This relation shows that we obtain traveling-wave resonance D = 0 in the

system when 4 = 112o(%) or 4 = n2x(C°+)" (Compare the preceding paper. )
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In principle, therefore, the nonlinear driving forces, irrespective

of the type of polarization of the high power primary waves, may excite

sum and/or difference frequency waves of either polarization. The only

factor of importance, apart from the difference in magnitude of the non-

linear driving forces in the various cases, is the traveling-wave reso-

nance, that is, equality in phase velocity and in phase velocity direction

between the excited and the exciting waves. This is a characteristic

feature of the dynamic nonlinear magnetoionic theory.

If collisional losses had been introduced in the system, we would

have found that F+ contained the same resonance terms but now with com-

plex refractive indices. It is interesting to recall that maximum

triple split coupling occurs when [no (_) = nx(_)3 X=I' which is possible

only when collisional losses are introduced. Triple split coupling can

therefore be regarded as a kind of traveling-wave resonance in the cou-

piing region. When no(_+) _ nx(_+) , F+ and D+ must be used with great

care, since the nonlinear driving forces now could excite both an o wave

and a z wave at the same time. A detailed discussion of this complicated

resonance case lies outside the scope of the present communication.

Let us focus our attention on Eq. 24 for a moment. From the previ-

ous relations it appears that _x = 0 = by if _T = 0. In purely longitu-

dinal propagation no second order electromagnetic waves are excited in

the system. By Eq. 27, D = p_ in this case. We then find from Eq. 26

that a second order longitudinal plasma wave, determined by the relation

 v(2)

2 z " (_Z)mT = (_T=0) (45)Pp 8t 0

is excited in the system. Since 1 - n 2 = X for the isotropic medium
q q t _

(_ = 0), Eq. 45 yields a very simple result in this case, and v _2j,
z

which become large when p_--) 0, is proportional to the gradient of the

first order kinetic energy of the oscillating electrons (Ref. I; see

also Eqs. llb and 12). It consequently appears that no interesting

second order nonlinear interaction effects take place unless _T _ 0.

The present theory is based on the limiting assumption that the

wave normals of the high power waves and the system waves are parallel.

The more general case when the wave normal directions differ by certain

specified angles will be discussed in the following paper. One finds

that Eq. 40 holds, provided it is written in vector form. (See also

the precediD_ paper.) If the medium is stratified in the z direotion,

then %, _ , %, and n in Eq. 40 "simply" have to be replaced by their
2

z components.
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5. GENERATION OF SUM AND DIFFERENCE FREQUENCY WAVES

From Eqs. 30 and 44 it appears that intense sum and difference

frequency waves will be excited in the magnetoionic medium if (a) the

high power or pump waves experience a medium resonance, that is, if

X = i or y2 = _R (Eq. 8); or (b) if there is traveling-wave resonance1 1
2 2 !

2

in the medium, that is, 4 = 4(% ) or n_(0)+). If both (a) and (b)

happen at the same time, which is possible, one can expect extra-strong

excitation of the resonant waves.

For the homogeneous medium the associated sum and difference fre-

quency waves (for nomenclature see also the preceding paper) are easily

obtained from Eq. 30 when _x' by, and _z have been evaluated by means

of the various relations of Sections 2 and 3. When the medium is not

homogeneous, which is the physically important case, the problem is more

difficult. What we wish to determine is not only the amplitude and phase

of the associated waves, but also the same quantities for the radiating

sum and difference frequency waves.

It is possible, however, to obtain an approximate but useful solu-

tion if the medium parameters vary so slowly that partial reflection

can be neglected. To that end we proceed as follows.

It can easily be verified that D+ can be written

I 2 21 22 22 l(d2)-e e -ell -eT _ h d2 2 2
P +- P e +k ----f+k (46)

2 2 o o x+
_+ -_ __ dz _
_ P

_+

where k - no(_+) and k _ - nx(C0+). The factor B preceding the
O_ C X C0 - + 0 -

operator_ is zero at the fourth reflection point (Eq. 9) for an "inde-

pendent" sum or difference frequency wave.

Let us assume, in order to study the radiation of the difference

frequency wave only (the procedure to obtain the sum frequency wave is

quite analogous), that _d of Eq. 24 can be written

_d = bo

- n(o_ )dz]
C O -

a
e

c b
o

z

• L  dz)
a

e

6O

(47)



where k is considered to be positive that is the nonlinear driving

force travels in the positive z direction. The driving force amplitude

b is assumed to vary so slowly that it can be regarded as constant in
0

the main interaction _egion. (Note: Resonances of the driving force,

X = 1 or y2 = _R ' are assumed not to appear within the traveling-wavel
2 2 l

2

resonance region.) Furthermore, we assume that resonance takes place

between the driving (nonlinear) wave and the extraordinary wave of the

system, and that k _ k • that is, we avoid the triple split region.0 x'

At some medium level z = Zo, traveling-wave resonance takes place.

For the very slowly varying medium we therefore write

k_l-k -- _(z-z )
X_l o (48)

which we assume to hold within the main interaction region z - Zm/2 too

z + z /2, where z is the width of the region.
o m m

If we next assert that z is so large that
m

ZoOm/2
= (k -k )dz I >> 1 (49)l ml

and make use of the asymptotic properties of the Fresnel integral (see

the preceding paper_ the first order solutions to Eq. 24 become

z

_ k_idz
v(2) __ bo e+J_-t -J Za

, e (so)
Y _(k 2_k 2)( k 2_k 2)

0 -- X -
w

when andz _ z - z /z,
o m

v
(2) N
Y

*j_ t
b e
0

_(k 2_k 2)( k 2_k 2)
O -- X -

m m

z z• _k ) e a
e a + (kx_ _ (51)
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when z _ z + z /2. At the bottom of the interaction region we have
o m

only one "associated" wave, which is not an independent or radiating

wave, since it does not satisfy Maxwell's equations for the unperturbed

magnetoionic medium. At the top of the interaction region, z _ z + z /2,o m

we still obtain the same associated wave but also an "independent" radi-

ating wave

exp rz
a

which is a solution of Maxwell's equations, at the difference frequency,

for the unperturbed magnetoionic medium. We can regard the amplitude

ratio l(k_ - k ) _I between these two waves as a measure of the
x

radiation efficiency at the difference frequency.

Since by Eq. 51 the amplitude of the radiating wave varies as

2_-/_ , we note that only a small gradient of the refractive index dif-

ference is required in order to generate a strong difference frequency

] ] of Eq. 49 must also be large a very wide mediumradiation. Since wm

is required at the same time. If I_[ -& 0, then z must--_ _ so fast
m

that Eq. 49 holds. Therefore, to first order, instabilities develop

only in a very extended interaction region.

Relation 51 can be used to evaluate the first order second harmonic

radiation of a high power primary wave. According to the previous re-

lations, this takes place at the levels where

2 2 2 2
n (_) = n (2_) or n (_o) = n (200) (52)

0 X

Here n(_) is the refractive index of the high power wave and can have

index x or o, as the situation may be.

Next let us investigate the possibilities of second harmonic travel-

ing-wave resonances according to Eq. 52. We immediately find that in the

longitudinal case YT = 0,

2 = - ( ), if YL 3 (53)

n x (e)=nx2(2o_) I+ X2 ' X=mp 2/002 =e__L

ZT2 = 0

2 2(2_)=1_ X _L
n o (e)=n x _ , if YL=--=I_ (54)
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These resonances are particularly interesting because they hold for
any X value and are therefore likely to generate strong second harmonics

when_ = 0, in spite of the fact that the nonlinear driving forces must
be of the third order. The case of Eq. 54 corresponds to "cyclotron
resonance" and should be observable, for example by "topside" sounders.

Putting YL = 0, the case of completely transverse propagation, we
find that

2
YT = O

x2
2(co)=n 2(2_)=i (55)

r" nx x --[_-

2

if YT 2 °_T (l-X) (I-X/4 ')'--YT2
-----_- x/4 iII

(Physically possible only if I _ X _ 4)

no2(co) =nx2 (2_) =I-X

if YT2=3(I-X/4)=Y 2
TIV

(x%h) (56)

and

2(_) = n 2(2_) = 1-x/h, if YT 2nx o
= 3(x-i) --Y 2 (x>ll)

T V
(57)

We further notice that Eq. 55 yields physically propagating resonant

waves only when I _< X < 4 (0 _< _Ye_l < I); Eq. 56 when X < 4 (S > --_III V

> 0); and Eq. 57 when I __<X < 4 (0_< _T < 9). Thus, only Eq. 56 is
physically possible when X < I. V

The corresponding traveling-wave resonance frequencies are

_( 2" _ 9°_ 4-16m 2coT2)_o2 = 5_Op _ P p (C°T2_ i_ a_p2) (55a)

2 2

co2 _ coT= + -7
(56a)

2

2 2 COT (coT 2 2)
o_ = co _ 3copp 3

63



which do not always correspond to propagating conditions [n2((0) = n2(2(0)
> o].

It is interesting that traveling-wave resonances can also be obtained

at or near the fourth reflection level, where all electron velocities be-

come very large. For this resonance to hold, we must require that

4((0) = 4(2(0). That is,

2

YT
1 - X - 1 -

2

1 -YL

x YT214

U 1_YL21n

whichyields, when[n2(.I = in_(2*1 = _,

2 4 2 (h-X)(X-1)

YL R = g YT R = X

zR2 5-x ( 2
: YTR

max

(14 x _<_)

= I, for X = 2)

(58)

This resonance takes place only when X lies in the range I to 4,

and _R is never less than one. At these resonance levels an exospheric

whistler may produce second harmonics. Conversely, a 2(0 whistler "pump"

wave may amplify (or generate) an (0 whistler by parametric traveling-wave

interaction.

In the general case where the wave normal makes an arbitrary angle

with the static magnetic field, the refractive index relations become

more complicated. Introducing the parameter

(59)

the equalized refractive indices become

2 2 x2/2
n 1 (_) : n 1 (2_) = 1 + (60)

x+ _/_,2÷(_,÷1)x2

2 2 X2/2 (61)

n 2 (_) = n 2 (2_) : I - _k+#k2+(k+l)X2
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FIG. 2. Demonstration of nS(_) = n2(2_) as functions

of X = _ (denoted by Xo) for various values of
YL and YT"
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with the corresponding longitudinal cyclotron frequency components

y 2 _

L 1

2

X
(62)

For graphical presentation (Fig. 2) we have labeled the equalized refrac-

tive indices 1 and 2. Only a more detailed investigation will reveal to

which polarization the equalized indices may correspond. This varies

with X and is of no immediate concern, since there is no difference in

principle' between the various states of polarization from the point of

view of nonlinear interaction.

A closer examination of Eqs. 60 and 61 reveals that most of the

traveling-wave resonances take place in a region where X > 1 - Y. In

Fig. 2, which depicts the equalized refractive indices as functions of

X, there are three levels for which n2(_) = 0 = n2(2_): X = I, 2, and 4.

Generation of a fairly strong second harmonic echo can be anticipated at

these levels. A detailed analysis of the radiation efficiency in this

case, which must be based on a more rigorous wave treatment to replace

Eq. 51, is outside the scope of the present communication. It should

be noted, however, that the following refractive indices are equal to

zero at these levels:

X = 1 n (m) = n (2e), for Y = 3/2
o x

n (m) : n (2e), for Z : 1 (63)X 2
z X

x=4 (e) = n (2e) for Y = 3
rlz O

where nz (e) denotes nx (_)' for X > X R.

According to Fig. 2 there are a number of levels, of special interest

in the "topside" ionosphere, where traveling-wave excitation of second

harmonics is possible. The same applies to the exosphere, where wave

interaction takes place in regions where Y > I. But the different reso-

nance levels may differ in efficiency, since the nonlinear driving

forces (represented by b in Eq. 50) may vary widely with X and Y.
o

6. NONLINEAR INTERACTION, PUMP WAVE CHARGE BUNCHING

In order to briefly discuss the parametric interaction in the

magnetoionic medium, let us limit ourselves to the effects of pump wave

66



charge bunching only (see also the preceding paper).
is the angular pump frequency)

2 _ (2)
_x = -_ }p _'Y("qvx

We then have (_
P

,y = -= 2 _( ._(2)) (6,+)
P

-*z = -_ 2 ata--(_v (2) )
P z

where

cos no(%)zl"q - No - No p p (65)

represents the charge bunching. If _ T _ 0, then _ is linearly propor-

tional to the pump field amplitude (Eq. 5a). When coT = 0, it is propor-

tional to the square of this (see Eq. 45 and the preceding paper).

Equation 24 and associated relations now yield the following coupled

equations:

8 2 2
Peru

8t 2
p2[Pe2+_p2(l+_) ] + a)T2pe + pp pe 4 Vy

: - oa Pe (66)p 8--_ x - Peru _T_Vz

av (2)

Fa2L 2 ] (2) ,y"+ _ (I+T]) v = o_T
8t 2 p z 8t (67)

a't_ e x : -°_LP e y (68)

The left-hand side of Eq. 67 is a Mathieu equation, and the left-hand

side of Eq. 68 can be reduced to one. Both operators describe oscilla-

tions in a periodically perturbed isotropic ionized medium.

To study the instabilities in this medium, we would have to solve

the coupled Mathieu-type equations, a very complicated matter. The

spectral terms of the steady state can always be obtained, of course,
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from Eqs. 66, 67, and 68. We then obtain the parametric resonance con-

ditions already described (Eq. 40). If the fundamental mode easily

becomes nonlinear, for example at the fourth reflection level, we can

pump the medium with a higher frequency than 2_ (3_, <<o, etc.) corre-

sponding to the higher order Mathieu instabilities. If losses are very

small, as in the uppermost ionosphere, harmonic traveling-wave pumping

and generation of the more easily excited modes should be possible,

provided the resonance conditions are satisfied.

7. NONLINEARITIES IN THE "TOPSIDE" IONOSPHERE

Even though the theory presented in the previous sections is based

on the assumption that infinite-plane magnetoionic waves travel in the

system, which is not true within a wavelength or so of a "topside"

sounder, it should be possible to draw some general conclusions concern-

ing the nature of the wave instabilities recorded by such a device.

At the normal total-reflection or self-oscillation levels X = 1 - Y,

I, and i + Y, one only expects fundamental plasma "spikes" except at

levels where any of the traveling-wave resonances of Eq. 63 would take

place. At these levels harmonic pumping should also be possible; that

is, plasma "spikes" could be recorded when the sounder emits at twice

the resonance frequency.

Instabilities are likely to be very strong at the fourth reflection

levels, at least as far as plane waves are concerned. These levels,

which lie in the following y2 range (Eq. 8),

r2 = _ l-X2 (x< l)
l-Xcos e

2

y2 = yR 2 _ X-12 (X >l/cos e)

Xcos e-I

depend upon the angle 8. Since the "topside" sounder acts almost as a

point source in the medium, plasma "spikes" at the _R levels are likely

to be strong only in wave normal directions for which (I/n)(dn/dS) = 0,

which means that the Poynting vector is parallel to the wave normal.

Since cos 2 8 is equal to 0 or I in these directions (longitudinal or

transverse propagation), strong fundamental plasma "spikes" are likely

only when _R = 1 (8 = 0), and _R = 1 - X (8 = _/2). This agrees with

the experimental results so far reported. Harmonic pumping of these

resonances (see Section 6) should also be possible, especially for the

one at _R = 1 (cyclotron resonance), since traveling-wave resonances are

easily obtained at this level (see Eq. 54).
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4"

If y2 = i, we obtain for small values of e

2 2(i-x)
n (_o)_ I + (69)

x sin2e

which means that for small angles the transverse component of n
X

practically independent of 0, or

is

nx(_)sin8 _2(I-X) (70)

Second harmonic traveling-wave resonances (now shown in vector form) are

thus easily obtainable in the direction around 0 = 0, as sketched in

Fig. 3. The second harmonic pump wave continuously builds up forward

and backward waves at the fundamental frequency, which in their turn

generate a backward second harmonic wave. The system becomes unstable

at complete traveling-wave resonance (see Section 6 and the preceding

paper), and "cyclotron spikes" will be recorded at both the fundamental

and the second harmonic. Similar pumping schemes would also be effective

at the higher harmonics, provided V is small enough (as in the "topside"

Harmonic "spikes" related to _ = 1 have been recorded byionosphere).

"topside" sounders, but to the authors knowledge, none related to y2 =

1 - X.

Unfortunately, present "topside" sounders are not equipped to record

harmonics and fundamentals simultaneously. A recorder with such features

would no doubt yield very interesting and important results, and is almost

a necessity if we wish to study the "topside" nonlinearities thoroughly.
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III. WHISTLERMODEANDIONIZEDSTREAMINTERACTIONS_'_

i. SUMMARY

O. E. H. Rydbeckand J. Askne

N65-10069

Gallet and Helliwell (I) suggested in 1959 that selective traveling-

wave amplification caused by interactions between an ionized stream and

whistler modes could generate low frequency emissions in the exosphere.

Rydbeck in 1959 (2) showed that no such amplification is possible when

the wave normal is parallel to the stream and the exospheric magnetic

field, but that another and probably very important interaction takes

place, by which the incoming fast cyclotron waves of the stream are

totally or partially reflected as backward whistler modes. This mode

transformation, which has a fairly large "gyromagnetic" interaction

bandwidth, occurs in a region where _ > 1 and the fast cyclotron wave

has a negative phase velocity. The efficiency of this transformation

depends upon the square root of the stream current density, in such a

fashion thatthe amplitude of the fast cyclotron wave decreases approxi-

mately as exp. (_-l z), where i is the current density and z the

axial distance, o o

The nature of this wave transformation is studied in more detail in

the present communication, as well as interactions for arbitrary values

of e, the angle between the wave normal and the static magnetic field,

which is initially assumed to be parallel to the infinitely wide ionized

stream.

It is shown that the forward whistler mode and the slow cyclotron

wave do not interact when e = 0, even if their phase velocities are equal,

because they are oppositely (circularly) polarized. Equivalence of phase

velocities, or wave "synchronism," therefore is not always a sufficient

condition for linear wave interaction.

When e _ O, there are no less than eight waves that can interact in

the system: four magnetoionic waves, two cyclotron waves, and two space-

charge waves. It is shown that the backward whistler mode excitation is

practically independent of e as long as e < arc cos [_/_(2)], where
P P

is the electronic plasma frequency of the streaming medium. Backward

whistler mode generation should therefore be a very probable phenomenon

in the exosphere, especially since the gyromagnetic bandwidth is so large

that one can "allow" some velocity spread in the stream and still obtain

reasonably strong interaction.

When e _ O, the streaming medium can actually amplify the forward

whistler mode, as postulated by Gallet and Helliwell. This is a travel-

i_-wave interaction between the fast cyclotron wave and the forward

Part I, Scientific Report No. 187, Ionosphere Research Laboratory,

The Pennsylvania State University, June 15, 1963 (with authors' revisions

to September 6, 1963).
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whistler mode. It increases in strength as @ approaches arc cos r(_L_/_,2)j,
P

but its gyromagnetic bandwidth is very small. For this amplification to

take place, one must therefore have a stream with an extremely small ve-

locity spread.

The space-charge waves play no essential role in the whistler mode

range. Their general interaction properties are, however, quite thor-

oughly discussed in the present report.

As a by-product of the present investigations, the wave propagation

properties of a moving magnetoionic medium are also discussed in some

detail. It is shown, for example, that the normal fourth reflection

level disappears for the moving medium. Furthermore, it is found that

magnetoionic waves are not always totally reflected, and may partly

proceed as cyclotron waves in the moving medium. This combined reflec-

tion-transformation level corresponds to an_ value somewhat larger
2

than I - _(i) /_2, where _(1) is the angular plasma frequency of the
P P

streaming medium, for the perturbed extraordinary wave.

Finally, the very general case when the stream makes some angle e s

with the magnetic field (assuming electrostatic field conditions that

make this flow direction possible) is briefly considered. The general

nature of the interaction between the whistler mode and the stream does

not change appreciably when le - esl has moderate values.

[Deletion in press by authors.3

Nonlinear whistler phenomena are likely to be important at various

exospheric traveling-wave resonance levels. Problems of a related nature

are dealt with in Ref. 3 and the preceding paper.

2. THE LONGITUDINAL CASE

We shall first consider whistler mode and ionized stream interaction

when the wave normal and the stream are parallel to the static magnetic

field.

As shown in Fig. i, we assume that the neutral ionized medium,

electron and ion density N (2) and the neutral ionized stream electron

and ion density N (1), are infinitely wide. We also assume that they are

homogeneous, and for the present, that the strength H of the static
o

magnetio field does not vary with z, the drift direction.
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FIG. I. Electron-ion stream in the stationary

magnetoionic medium, longitudinal case.

Since the differential space-charge densities ZkN(I) and ZkN(2) are

equal to zero in the longitudinal case -- that is, no charge bunching

takes place -- Maxwell's equations yield (E z = 0)

PeEy2 =l,to__(q(1)v(1)+q_l)v(1)+q(2)v(2)+.(2)v(2))eYe yj e Ye "_J YJ

(1)

where p_ is the one-dimensional vacuum electromagnetic wave operator,

2 0 2 _2

Pe - Oz 2 - l_ogo_'2
(2)

v "I'(_ and v "I'(_ are the x-direction a-c velocities of the streaming elec-
X X.

e 3

trons and ions, etc., and

( I ) _eN(1 ) _q_ I )qe = = q(e2) = _eN(2) = _q_2) (3)
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We next introduce the drift operator

P-t - _ + Vo0-_ (4)

which annihilates a synchronous wave; the gyro-oscillation operators,

which annihilate cyclotron oscillations,

2 a2 2 2 0 2 2

Pc -- + (A)H PC. - 2 '" O_
e- Ot 2 e J Ot H.J

(5)

where ..c° and .._°. are the angular cyclotron frequencies of the electrons
e 3

and ions; and the cyclotron wave operators, which annihilate cyclotron

wave s,

2 2 2 2 2 2

Pge -- l°t + *H Pgj = Pt + _H.e 3

(6)

The equations of motion can then be written

z iv(,) _e Pt(PtEx-'%%)Pge 8t x e =

2 ,V(x_ ) _ O__(__%Ex_I_HeEy )Pce = -me

(7)

and so forth, in which m = mass of electrons.
e

Relations 1 and 7 now yield the coupled transverse field equations

(2) 2

I Pe-I_ogo _--_1 --_

L e JL o't-X Pc
e

(2) 2

+ -_ogoPt t_Ope pgj+C0pj Pge

 22(-Tp.o% tP+P+ '+H
_ '+ J\ ,+

_(2) 2 _ (2) 2

2 -o_j
PC e Pcj ]

( (I)22 (i)2 2 _-I

+Pt/mH %eP + -_"jmpjP+e)J%
j x

(8)
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where _(1) and _(1) are the angular plasma frequencies of the streaming

Pe Pj

electrons and ions, and _(2) and _(_) are the same quantities for the

Pe Pj

stationary electrons and ions [_ (l)e = eeN(Z)/m e , etc.].

Pe e o

If the medium parameters are constant, Eq. 8 implies that (Ex/Ey)2 =

-1; that is, all wave motions are circularly polarized. This yields two

uncoupled wave equations,

(1)2 =(,)2
D* P* 2 E (p_j_o +p* )E-g-g.-em x = ÷PogoPt Pe ge PJ xe 3 x

(9)

when E = " and
y -3E x'

2 = + ij,o gopt (pgja)p(le) 2+ pge(_p( _ )2PgePgjPemoEx )E x

when E = +]Ex._ In these equationsY

Pge = pt+ Jt_IIe P* =ge Pt-J_He

__ . 0
Pc = Ot + J_H PC = _- JmH

e e e $

(10)

(Ii)

and so on, and

2 2

2 2

Peru x : Pe - P'O o01;_ P_e Pcj ]

(12)

2 t _2
/_ (2) ,,,,,2j \

2 2 . 0 t +-PJ I
Peru o " Pe - IJ'o 0"_ i' _" Pc ]

e J

(13)

are the operators annihilating the extraordinary and ordinary longitudinal

magnetoionic waves.
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The right-hand sides of Eqs. 9 and I0 couple the electron and ion

cyclotron waves to the magnetoionic waves. This coupling tends to zero

when N[l" ) --_ 0.

Since the p* and p* operators annihilate fast cyclotron waves and

ge gj

Pge and pgj annihilate slow cyclotron waves, we infer from Eqs. 9 and I0

that the backward waves only couple to fast-electron cyclotron waves and

fast-ion cyclotron waves; that is, the interacting waves must have the

same sense of polarization in the homogeneous and linear medium. From

these equations it also appears that the moving electrons and ions are

stationary whenever l_/_z I <<_/v -- when the phase velocity of the
O

waves is much larger than the drift velocity. Often, therefore, the

ordinary magnetoionic wave barely "notices" the drift motion of the

streaming electrons and ions. The situation is entirely different as

far as the extraordinary waves are concerned. Because whistler modes

travel slowly, they readily interact with the streaming medium.

If we assume conditions such that p* E _ 0, Eq. 9 then yields
ge x

. 2 Ex +_o¢oPt _(1)2-
PgePemx _ E

_e x

(14)

If 2 E _ 0 at the same time, strong coupling takes place between the
Pem x

x

fast-electron cyclotron wave and the backward extraordinary magnetoionic

wave (the whistler mode, practically independently of the streaming ions.

On the other hand, if p_.Ex _ 0 and p2em Ex _ 0 at the same time, strong

j x

coupling takes place between the ion cyclotron wave and the whistler

mode. Hence, the ionic and electronic cyclotron wave interactions with

the whistler mode can be analyzed separately with very good accuracy.

In the following discussion we will limit ourselves to a study of the

electron cyclotron wave interaction; the ionic case will be dealt with

in a later report.

Considering electrons only and replacing _/_z by

0
-- - -J7 (15)
8z

[that is, Re (7) positive indicates a forward wave if the time factor

is exp. (j_t)], Eqs. 9 and I0 can be thrown into the instructive forms

1)2 2o) (2)
2 , [2 e ,'e

= Oo +
(16a)

(16b)
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where i/C2o = _o¢o" This demonstrates the effect of the drift-Doppler

shift of the transversely oscillating streaming electrons.

Let us next, on the basis of Eq. 16a, study the interaction between

the whistler mode and the fast cyclotron wave. Relation 16 can now be

written

2 2('_ -kx) = k2Xl (0_-y)

Fast Eo Coupling term

cyclotron magneto-
wave ionic

waves

(17)

where

k 2 k 2 (I X2 (k 2 = c02/Co2)

xl =
e

(18)

e

Thus, if the coupling is neglected, we have the three independent roots

0 = (_--k_ 0 0Y 1 = Y 1 Y 2 = 72 = +k x Y 3 = Y 3 =-k x (17a)

It is interesting to note that Eq. 17 can also be written

2 2('Y -k2 ! ) = k2 X I kH (19)

where

2 = k 2 - k2X1k21 X (19a)

This relation demonstrates the influence of the static magnetic field

upon the coupling. If the electron stream is underdense, k s _ k s.
_1 x
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Now let us introduce the notations

kH-_-k21 kH-C(+k21

= (20)A- 2 km 2

where _ can be regarded as a measure of the phase velocity difference,

from synchronism, between the fast cyclotron wave and the k wave (a
21

slightly perturbed backward whistler mode). Relation 19 then becomes

(_+A) (Vg-A) (_Y-k m) = k2XlkH (21)

where

= y+k m (21a)

In the interaction or traveling-wave resonance region, where A 2 is

small compared to k 2 if the electron stream is not too dense, Eq. 21
m

becomes approximately

2 k2XlkH +A2 (][I << 1 ) (22)
_- k

m

which yields

(X I << I) (22a)

where

2 k2XlkH

AO = k (22b)

The remaining root of Eq. 21 becomes

"Y2 _ ItX [1-n_'_'_1 (1+1_'_X) 1

X

(A - O! Xl<< 1) (23)

representing a forward whistler mode slightly perturbed by the underdense

stream.
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The two interacting waves experience traveling-wave resonance. Both

are backward waves, since the fast cyclotron wave is a backward wave when

Y > I. In the center of the interaction or coupling region, A = 0. That

is,

= kH = o_+(k21)k_ or y - yo _ 1+_(,.x)_, (24)
0 o 0

where _ = Vo/Co. If (n x2) Y
o

>> i, Eq. 24 reduces to

_H

_._q
I + 02/3X "/3"

Yo = _0 "- Z (24a)

This demonstrates how the gyromagnetic interaction-band center varies

with the stream velocity and the plasma frequency of the stationary
medium.

In the center of the interaction band,

W k,,
IIm(Yl)l _A o = koVx1_

3 =

(a . o) (25)

which is thus proportional to the square root of the electron current

density. The higher the current density, the stronger the interaction.

The gyromagnetic interaction bandwidth is determined by the relation

(26)

corresponding to two k H values, k H and k H . Relation 26 yields
l 2

AWH _ 2" _(Y2-YI ) = v - oo

where

= -_-_--" 1+ y
{ x O

(X I << I) (27a)
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From Eq. 27 one obtains the approximate relative gyromagnetic band-

width,

 4BVx
O0 lk

m

(X I << 1) (27b)

which can be quite large, as accurate solutions of Eq. 21 would show,

when the stream is fast and dense (X of the order of 0.5, for example).

It should also be pointed out that Eq. 27b can be written

C o le6 o
(X 1 << 1_ Y ,,- Yo) (27c)

A'_H--=4 V li°l
_H Hokm

o

(X1<< 11 Y _-YO) (27d)

The magnetic bandwidth thus depends upon only the stream density if the

k2X term in k is neglected.
o i m

It should be added that Eq. 17 has the following simple solutions

when k = _:
x

'Y1 " 2[-k'H + _(2_-k}[ )2-4k2X1 ]

3

Y2 =0_

(28)

To demonstrate the details of the wave interaction, we have plotted

in Fig. 2 the normalized 7 values F = 7/k, as functions of Y for X =
' l

2/3, X = 9 ( a whistler mode value), and _ = 1/3. We have also included
2

the roots i' , F , and F of Eq. 16b, which, similarly to Eq. 17, can be

written _ s 6

2 k2) k2xl (a-'r)- o = (29)

where

k 2 = k2(1 X2 _ = k2n 2o -1 +Y/ o
(30)
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FIG. 2. 71, 72 , and 73 as functions of Y = _/_o for X = 2/3, X = 9,l 2

= 1/3, and e = 0 °.
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For completeness we have also included the space-charge waves of the

system,

(31)

which do not interact with the other waves when e = O.

Let us assume that a fast cyclotron wave f travels in the positive
1

z direction, which for the moment is supposed to be the direction of

increasing _H' or Y. When the F! wave passes the level Y = I, it acquires

a negative phase velocity and has the property of a backward wave. As

it approaches the interaction range A-B, its negative phase velocity

gradually decreases until it meets the perturbed backward whistler mode

F At A and through the interaction region, these two waves travel
3

with the same negative phase velocity.

At and around A, strong interaction takes place between the waves.

If the interaction distance Y -Y is long enough, the fast cyclotron
2 1

wave is almost totally reflected at A, but now in terms of a backward

whistler mode. This means that the electron stream is practically

stripped of its transverse kinetic energy. The remainder of the first

cyclotron wave leaves the interaction region at B and follows the I"
l

branch. For large Y values it will almost be a pure cyclotron wave, as

it was in its initial phase (Y < I).

Using the coupled analysis method of Rydbeck (4) and assuming that

varies linearly with z throughout the interaction region, we find that
H

the reflection coefficient, defined as the ratio between incident cyclo-

tron-wave power flow and reflected whistler-wave power, becomes

I

R132 _ --P1 = ' _'2Ao ("z2_z' 1 )T_/I_ (XI << 1 )

l+e

(32)

where z and z are the z values corresponding to Y and Y, The reduc-
2 1 2 1

tion in cyclotron-wave power flow through the coupling barrier is

)

2
= I-R13

(32a)
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@

If Ao(Z - z ) is of the order of unity or more, the reflection or2 1

mode transformation is almost total. It is important to note that the

traveling-wave interaction produces only a mode transformation in this

case; no amplification takes place.

Let us next investigate what happens if a whistler mode travels in

negative z direction and approaches B from the region Y > Y . At B it
s

is partially or totally reflected in the form of a fast cyclotron wave

(which follows branch F to high Y values) or partially transmitted
1

through the coupling barrier, emerging at A with much reduced amplitude

as a perturbed whistler mode following branch F .
3

Actually, the wave reflection mechanism at levels A and B is almost

the same as normal wave reflection in stationary media. One easily sees

1

that this is so if the drift factor - _(k x + kH - _), drawn as a thin

line in Fig. 2, is subtracted from the F and f curves.
l 3

It should be emphasized that the results presented in Fig. 2 are

based on the concept of a monovelocity stream. If the velocity distribu-

tion of the stream is taken into account, for example by using the methods

of Rydbeck and Wilhelmsson (5) and assuming a rectangular velocity dis-

tribution of velocity width _Vo, we find, as expected, that the main

features of the interaction effects are preserved as long as (AVo/Vo)S <<

(4Z_o/_)2 , which by Eq. 27 means that (_Vo/Vo)2 << (2_o_co H )2. Thus, for
o

the traveling-wave interaction to take place efficiently, the relative

velocity spread should be appreciably smaller than the relative magnetic

bandwidth. Since this bandwidth increases with the square root of the

stream current density, we infer that dense streams are less susceptible

to velocity spread effects.

Returning to Fig. 2 for a moment, we notice that there is no coupling

between the F and F waves at C, where they should experience traveling-
2 4

wave resonance. The reason is that these waves have opposite senses of

circular polarization and no component of a-c electric field in the direc-

tion of the wave normal. This example typically illustrates the fact that

traveling-wave resonance alone is not a sufficient condition for inter-

action in the linear theory. That is also clearly borne out by our theory,

since F is a root of Eq. 29, F a root of Eq. 17, and these equations
4 2

are uncoupled.

When @ ¢ 0, however, both F and F have an E component in the
2 _ z

direction of the wave normal. In this case, both waves will interact

at and near the C level, as will be shown in the following section.
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3. WAVENORMALAT ANGLETO STREAMANDSTATICMAGNETICFIELD

The wave normal is now assumedto makean arbitrary angle e with
the direction of the static magnetic field, which is parallel to the
drift direction of the electron-ion stream (see Fig. 3).

As is well knownfrom the magnetoionic theory, the magnetoionic
modesnowhave a longitudinal componentof the a-c electric field, which
means that waves with opposite senses of polarization can interact at
traveling-wave resonance and that longitudinal interaction with the space-
charge wavesmay also take place. Wehave in this system four magne-
toionic modes(one forward and one backward modeof each kind), two
cyclotron waves, and two space-charge waves, and will therefore obtain
an eighth order wave equation.

@

Since ionic oscillations will not be discussed in this section, we

drop the e-charge indices and introduce the notation

ql = _ q(1) (33)

for the differential charge density of the electron stream. Maxwell's

equations can then be written as follows (assuming the wave normal to

lie in the x-z plane).

I I I I

Direction ors] [ i I
wave normal l ] I

_0 I I II I [
/ I I I

I I I
I I I
I I I
! ! !

I
I

I I
I I
I I
I I
I I
I I

I !
II
II

p

Stationary electrons
• . (s9

and ions, denslty N

I I
0 I

I [ _H o
i l
I l____ Streaming electrons and

l l ions, density N {l), drift
_p-

L[ __..._ P velocity v O

I I

FIG. 3. Electron-ion stream in the stationary

magnetoionic medium, wave normal at angle e.
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aH (2)_:')
= E;O 0"l; + qlYO .t- q + q

8_ q(,),,(;) + q(2),,(2)- _ " ¢o 0"_"+ z x

Ox = -!%"_"

(34)

OEz _E x ___
"'_" + "T'g-= -_o 0_

8E OHz
- -

To the transverse equations of motion (Eq. 7), properly corrected

for oblique incidence, we now add the longitudinal equations of motion:

0t z =

(35)

We next introduce the longitudinal a-c convection current density

i(1)z E= _Vo + q(1)vz(1)] of the electron stream. The equation of con-

tinuity then yields

(36)

by which _ can be eliminated from Eq. 34.

If we introduce the wave operators

Pe = _x2 ÷ _ " I_o_:oGt 2
(37)
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which annihilates an electromagnetic wave in vacuum, and

2 O2
PXZ = 0x_;z (38)

the transverse coupling operator, and drop the e subscripts of the cyclo-

tron wave and cyclotron oscillation operators (Eqs. 5 and 6), Maxwell's

equations can be transformed into the instructive coupled wave equations

P 2
'_1% = _3Ex - _ :°HPcVo 8x

¢
o

p(_)22 2 _o 2 OEz

TI-PgPCox 2') Ex = - T3Ey PgPcPxzEz c2 PtPcVo 0 x
o

(39)

(40)

where

_1 = PgPcPe - _ogo co PcPt+_Op Pg Ot2)

(41)

and

(p(1) 2 _Op(2)2 2 _ \T"3 = p,o_o,_H ,,o p2pt+ Pg"_')
(42)

We immediately notice that for _/_x : 0,

• iEy = __ _3Ex

x y

(43)

When the coupling is weak, the cyclotron waves and the magnetoionic waves

are thus almost circularly polarized. It is readily apparent that Eq. 43

is equal to Eq. 8 and therefore contains the longitudinal magnetoionic

modes and the cyclotron waves, a fact that is very important to note when

analyzing the complete set (Eqs. 39 and 40).

Let us next introduce the operators

2

PP2 -
(44)
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which annihilates a plasma oscillation in the stationary homogeneous
medium, and

2 2 (1) 2 O2

PPL = PtPP2 + W p O t2
(45)

which annihilates the unperturbed space-charge waves and the plasma
oscillations of the system if v = O.

o

E can now be eliminated from Eq. 40 after some transformations.
Z

We find that

2 O2E

4 . 2 2 +p2 (_ + \ 1 ..__,,_xA)jPPL (_l+_3)Ex = IX_I t_o go Ox 2 (46)

where

O

Pd= Vo O-'_ (47)

is a drift operator, and

_)2 2 2 o2 4 2) u_2 2 2
X = _0 Pc Pg 0"-_- P t + _0 HPtPg

(48)

A= _p(I)2 [ 2 2 { 2 (I) H_t)I _-_-_o 0x-"_ + mp P_

Pg _o_op2g- _OHp c _x 2

(48a)

If we introduce the combined transverse and drift coupling term

K = XTI + Pt(_o_o T_+A 1 (49)
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then Eq. 46 assumesthe form

4 +jI3)(?I_J,E3)E x = KL E
PpL(T1 8x 2 x

(50)

Since _2/_x2 =-72 sin s a for the homogeneous medium, we see from

Eq. 49 that the coupling vanishes when e = O.

Let us put _ (2)2 = O. We then obtain
P

(1) 2

(_) (2) o = =P
a)p -

2

00(1)

. C

(51)

)2
If this relation is used in Eq. 50, remembering that _(s should

P

be zero in its left-hand part, we obtain the coupled wave equation for

the drifting magnetoionic medium. When v = O, this reduces to the
0

Appleton-gartree relation [if we put (_/_t) s = __2, _2/_zS = _Z_ cos 2 O,

and 82/8xe = _ e sin s el.

Since

• _o_o %(_) P___t+=(2)2_I
. p p_ )JPg

(52)

we notice that uncoupled cyclotron oscillations

2
PcEx = O (53)

are possible only when the medium does not drift (p; = pt ).

The form of Eq, 50 is very interesting, since it shows that the fast

cyclotron wave and whistler mode interaction discussed in Section 2 will
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be very strong even for moderate angles @, and actually varies only

slightly with the angle. This will be demonstrated by graphical presen-

tations in Section 4. Note also that the drift coupling term in Eq. 50

is proportional to cos e sin s e when the 92 terms are neglected, and

consequently disappears for longitudinal as well as transverse propagation
in this case.

Whenever any of the roots of ($_ ÷ $:)Ey = 0 and P_LEy = 0 come close

to each other, one should expect traveling-wave interactions of some kind

to take place, to first order, for moderate e values. This will be dis-

cussed in the following sections on the basis of graphical presentations

of the roots of Eq. 50, which is an eighth order wave equation, for

various e values.

If we replace _2/_z2 by -7 2 cos 2 e and _2/_x2 by -7 _ sin _ O, we find

from Eq. 50 that

Y = 0 if (1-X1-X2)[Y'2-(1-X1.X2)2](1_y2)/(l_y2_x2)_O (54)

and

1/y 2 = 0 if x2/(1-r2 ) - 1/(1-Yecosee) = 0 (54a)

(The corresponding Y value is denoted YR in what follows.) We thus note

that the familiar magnetoionic zeros, X + X = X = 1, and X + X =
1 2 13 1 2

X = I + Y, are drift-invariant. When the medium drifts, however, only
13

a closer examination reveals what type or types of waves will experience

7 zero. In that case, 7 = 0 does not necessarily correspond to total

or almost total reflection of the wave in question, as will be shown in

the following sections (see also Fig. 2). Furthermore, 7 = 0 for ye = 1

if X _ O. When part of the medium is stationary (X _ 0), we therefore
2 2

have a fast cyclotron wave with 7 = O, that is, with infinite phase ve-

locity, at the cyclotron resonance frequency. This zero disappears when

the entire medium drifts, which means, as will be show D later, that the

fast cyclotron wave transforms into a different kind of wave for Y < I.

It is also very interesting to note from Eq. 54a, which is the fourth

reflection level, that the zero disappears if the entire medium drifts

(i.e., if X = 0). Furthermore, the space-charge wave 7 values approach
2

infinity at this level only, which for e = 0 reduces to the familiar X =
I. 2

Since not all waves interact, but when some waves do interact this

takes place for different Y values, the operator presentation (Eq. 50)
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of the waveequation is very useful for an approximate study of the
various interaction regions. This applies where Eq. 50 can approximately

be reduced to an equation of comfortably low order, about as was done in

the F -F interaction range in Section 2. This is almost impossible if one
1 3

writes down the complete dispersion relation in 7 (to be shown in Section

6). Furthermore, an operator analysis of the interaction mechanism yields

a much deeper insight into the physical nature of the problem.

4. VARIOUS F VALUES AS FUNCTIONS OF e AND Y

On the basis of Eq. 50, where _2/_z2 has been replaced throughout

by -72 cos 2 e and _2/8x2 by -72 sin 2 e, we have plotted f as a function
q

Y for various e values. The following notation has been used. Curves

representing F are marked q. Curve 1 indicates the perturbed fast cy-
q

clotron wave, curves 2 and 3 the perturbed forward and backward extraor-

dinary magnetoionic modes (where the terms forward and backward refer to

the propagating range), curve 4 the perturbed slow cyclotron wave, curves

5 and 6 the perturbed forward and backward ordinary magnetoionic modes,

and curves 7 and 8 the perturbed slow and fast space-charge waves. The

unperturbed modes, which the perturbed modes will approach asymptotically

in various regions of the r-Y plane, have been marked 10, 20, and so on.

The -n branch is marked 30; the +n branch, 50; (I/_L)(I + Y), i0 andx o -

40; (i/PL)(1 + _Xl/(l - X ), 70 and 80. In these expressions,- 2

8L = _ cos8

and as before, _ = 1/3, X = 2/3, and X = 9. Real components are
1 2

marked by solid lines, imaginary components by dashed lines.

(55)

Figure 4 shows that the main interaction between waves f and f
3 1

remains practically unaltered, as expected. The space-charge waves do

not interact (they are practically unperturbed), and the same is true

of the ordinary magnetoionic waves, which never propagate in this region.

Notice, however, that the slow cyclotron wave and the forward extra-

ordinary wave (the forward whistler mode) interact in a narrow Y range,

from Y to Y (coupling levels C and D). This is due to the fact that
3

these waves now have E-field components in the direction of the wave

normal, as is clearly brought out by Fig. 5, which demonstrates the

situation for e = 30 ° . In Fig. 5 all waves are more perturbed, but the

change in the nonpropagating ordinary waves is very small.

The interaction in range C-D is interesting from a theoretical point

of view, since it may lead to whistler mode traveling-wave amplification.

Assume that a forward whistler mode (curve 2) approaches the coupling

level C and there interacts with the electron stream, which for the mo-
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FIG. 5. Yq as a function of Y for 0 = 30 ° .
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ment is considered to have no slow cyclotron-wave modulation. In the

course of the interaction, the whistler mode becomes amplified and leaves

level D along branch 2, with increased amplitude. The electron stream

leaves the coupling region at D, carrying a slow cyclotron wave, which

propagates along branch 4 in the positive z direction. This wave has a

negative a-c kinetic power flow, and the energy provided to amplify the

whistler mode is supplied, as it should be, by the electron stream.

If the input whistler power is p(i), the output.whistler power p(O)

becomes approximately 2 2

4)]=ax_(=4-z I)12

4o)¢)o (56)

where z - z is the length of the interaction range. [The detailed
4 1

relation between Im(F ) and the medium parameters will be discussed on

the basis of the coupled wave equations in a later publication.]

Next let us look at Fig. 6, which depicts the f situation for @ =

40 °. We notice that the f -f interaction remains about the same, as
3 1

predicted from the coupled wave equations. The f -f interaction has
2

increased in strength and magnetic bandwidth, although the latter is

still much smaller than the F -f interaction band. The space-charge
3 1

waves are now beginning to show some interesting features. They become

strongly perturbed when Re(Fs) [= Re(f7)] _ f , that is, when the phase
2

velocity of the space-charge waves roughly equals the phase velocity of

the forward extraordinary magnetoionic mode. Furthermore, it is of

interest to note that the ordinary magnetoionic modes remain practically

unperturbed by the electron stream.

The space-charge wave interaction situation changes drastically

when we go to a e value of 50 ° , as depicted in Fig. 7. Between the

levels E and F (range Y to Y ) the space-charge waves are no longer
5 s

evanescent and growing, a property they resume when Y > Y . The major
s

part of the space-charge wave kinetic energy flow, assumed to be positive,

will be converted to a very perturbed forward extraordinary magnetoionic

mode at level E, and will travel in the positive z direction along branch

2. An amplified forward whistler mode (we still use this concept in

spite of the fact that e = 50°), which may leave the F -F range at D,
4 l

may transform to space-charge waves at F, a matter that will be dealt

with in more detail in a later publication.

At e = 60 ° the space-charge wave interaction shows essentially the

same features as at 50 ° , though more pronounced. Discussion of this is

outside the scope of the present communication.
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When cos 2 e < l/X2 = 1/9 = cos 2 e R (e R _ _+70"5 ° in the present

case), the fourth reflection level disappears and no wave interactions

or couplings take place, as shown by Fig. 8. Thus no interesting things

which illustrates the importance of the fourthhappen when e 2 > e R,

reflection level in this and so many other magnetoionic interaction

problems (3).

To demonstrate the angular dependence of cyclotron wave and whistler

mode interactions, we have plotted in Fig. 9 the magnetic bandwidths as

functions of e. It is extremely interesting to note that the F -F
8 l

interactions (fast cyclotron waves being reflected as whistler modes)

remain very uniform and broad through a wide angular range. The F -F
4

interactions, which lead to amplification of the forward whistler mode,

have a narrow bandwidth and are easily "smeared" out by velocity distri-

bution effects in the stream. Interaction f -F is a very probable
3 1

phenomenon in the exosphere. Direct whistler amplification should occur

only when the stream has a very narrow velocity spectrum, and under such

circumstances it will take place in an annular cone of, say, I0 ° < e <

eR •

In Fig. i0, [Im(F )] and [Im(f)]_ are depicted as functions
max 2 max

of e. The imaginary parts tend to great values when e approaches @R'

which corresponds to an infinitely strong static magnetic field, a case

that may be approached in plasma amplifying devices. It is important

to note that in the e range for normal whistler mode operation (e less

than about 35 °, Y less than 2.5) both the gyromagnetic bandwidth and

[Im(F )] vary only slightly with e" This must make the transformation

max

from fast cyclotron wave to backward whistler mode very efficient, pro-

vided the velocity spread of the stream is small enough.

To demonstrate what happens when N (e) varies with z, as it actually

does in the exosphere, F is plotted in Fig. 11 as a function of Y when

q _(_X = 9Y, which means that the ratio )/H is assumed to be constant
2 o

throughout the medium. If we compare this plot with Fig. 5, we note

that there are no significant changes as far as the f -f interaction
3 1

is concerned. The magnetoionic waves are reflected at the levels

X = X + X = 1 and 1 - Y, and the fast space-charge wave (curve 8)
12 1 2

has 7 = 0 for X = I + Y (see Eq. 54). Furthermore, the space-charge
12

waves transform into evanescent and growing waves when YR = YR (the
1

"first" fourth reflection level), which in this case corresponds to

X _ 1 (see Eq. 54a). The fourth reflection level thus has a twofold
2

meaning for the partly drifting and partly stationary medium (X l _ 0,
x _ 0).
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To demonstrate how the cyclotron wave and whistler mode interactions

vary with the wave frequency, F is plotted in Fig. 12 as a function of
q

2

I/Y = cj_ H for e = 40 ° assuming m (2) /_ = 9 and X = 2/3. Actually
' p l

)2
_(l should have been constant, but the general picture would not change
P

much if this change were made. The reflection and amplification inter-

actions now appear in reversed order. The backward F mode interacts
s

with the fast space-charge wave in the Y -Y region, where the latter
7 8

has a negative phase velocity. In this coupling region, therefore, the

fast space-charge wave is partly or wholly converted into a backward z

wave, a transformation that in principle is very similar to the F -F
3 l

interaction. The fast space-charge wave has 7 = 0 for X = 1 (see
12

Eq. 54). It will interact with the forward F mode, of extraordinary
2

type with 7 = 0 for X = 1 - Y, when X is somewhat smaller than 1 - Y
• 2 12

(not seen in Fig. 12). Since these interactions take place for X < I,
2

they are of limited interest in the whistler case. Finally, it should

be noted that the space-charge waves transform to a regular pair at the

"second" fourth reflection level YR = YR '

2

It appears from Fig. 12 that, as expected, additional interactions

occur when the ordinary magnetoionic modes also propagate. To illuminate

the complexities of these interactions, F is plotted in Fig. 13 as a
q

function of Y when X = 0.i, X = 0.6 (i.e., X < i), for _ = 40 °.
1 2 12

Although this choice of parameters applies mainly to plasma amplifier

theory, it is nevertheless of great practical interest in connection

with the present interaction studies.

We immediately notice the following interesting and somewhat dif-

ferent properties of the underdense system (X < I). The slow cyclotron
12

wave is perturbed near the fourth reflection level, but it does not

directly interact with any of the other waves. The fast cyclotron wave

smoothly transforms to a forward extraordinary magnetoionic wave and

never acquires a negative phase velocity. The fast space-charge wave

similarly transforms to a forward ordinary magnetoionic wave. The slow

space-charge wave (branch 7) and the forward, really nonpropagating,

extraordinary magnetoionic wave transform into growing and evanescent

space-charge waves at the fourth reflection level. At the N level these

waves transform into a normal slow and fast space-charge wave pair. The

nature of this complicated transformation has not been analyzed in detail.

The forward extraordinary magnetoionic wave (curve 2) is reflected

in a perfectly normal fashion at the level X = i - Y. The ordinary
12

wave, on the other hand, reveals some very peculiar interaction prop-

erties. It is partly reflected at the M level, that is, at Y = Y •
9
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(In the absence of the streaming mediumit would proceed, without any
reflections, in the positive z direction.) And it is partly transmitted
as a hybrid wave from levels L to A, whence it again splits into a back-
ward extraordinary magnetoionic modeand a fast cyclotron wave, along
branch I. The forward ordinary magnetoionic wave is thus split into no
less than three different types of waves, but no wave amplification takes
place.

5. WAVEPROPAGATIONPROPERTIESOFA MOVINGMAGNETOIONICMEDIUM

The wave propagation properties of a moving magnetoionic mediumare
also of interest here, especially if one has in mind their application

to the solar corona. To study them, we have "simply" to put _ (2)_ in

Eq. 50 equal to zero. P

Let us first look at the basic case of purely longitudinal trans-

mission, e = 0. If we let 8/8t = j_ and allow _H to vary with z, we
obtain the following wave equations for e = 0:

• _ • _ , ,%, #

Slow or fast Fast or slow Isotroplc wave

c)_/utron wave _on _ operator

operator operator

02 +k2_ l E; ojj. (57)

We see that a static magnetic field gradient now brings about a coupling

of waves with different senses of polarization. Similar results would

be obtained if Eq. 57 were extended to include also the stationary medium

(_ (2)2 > 0).
P

Neglecting the gradient coupling effects, in Fig. 14 we have plotted

F , re, F3, F , F , and F , plus the uncoupled space-charge waves F and
1 4 5 S 7

F as functions of Y. The plane isotropic electromagnetic wave, assumed
8'

to travel in positive z direction (increasing Y), soon splits up into an

ordinary and an extraordinary wave. The ordinary wave travels without

any perturbations and is not affected by the motion of the medium. The

extraordinary wave, however, is reflected not at the X = 1 - Y level as
1

it would in a stationary medium, but at the A level, where reflection is

almost total. The remaining wave energy is transmitted through the cou-

pling barrier A-B, whence it emerges as a fast cyclotron wave following

branch i.
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The slow cyclotron wave, if it is excited in the streaming medium,

proceeds in the positive z direction without any interactions. But note

that the fast cyclotron wave transforms smoothly to a forward extraordi-

nary magnetoionic wave. For large Y values the pair 2 and 5, if of equal

amplitude, would form an almost plane polarized wave, with k --) k.
2,5

The fourth reflection level, which in this case would be YR = l, disap-

pears for the streaming magnetoionic medium (see Eq. 54a).

In Fig. 15 we have plotted f versus Y for e = 30 °. The electro-
q

magnetic wave interaction remains practically unchanged, but the two

cyclotron waves now gradually transform to a symmetric space-charge wave

pair. The slow space-charge wave smoothly transforms to a slow cyclotron

wave. The fast space-charge wave transforms to an extraordinary magne-

toionic wave, which proceeds "undisturbed" in the positive z direction.

We see that the traditional fourth reflection level, where Ill --> _,

is again absent. In this respect the moving magnetoionic medium differs

greatly from the stationary medium. When the medium does not move, the

phase velocities of the extraordinary magnetoionic waves tend to zero at

the fourth reflection level and thus become smaller than the drift ve-

locity. This, as a matter of fact, is demonstrated by the drift-Doppler

shift terms in Eqs. 16a and 16b, and also by the following Appleton-

Hartree-type relation for the movin_ magnetoionic medium, obtained from
Eqs. 50 and 51:

n 2 =F 2 = I
Xld

b +_b 2 - ad

(58)

where

2 2

d : I + _ /pp
I

: _82 F2 sin2e
Pp : p +_

I

I 4 1 2

b : 1-_y2sin2e 2 2 + 2 2

PtPP 1 PP 1

a -- 1÷y2 1- _ sln 2

P% PPI

(59)

Relation 58 is presented for the sole purpose of demonstrating what

happens to the Appleton-Hartree equation when the magnetoionic medium
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[Figure 17 deleted in press

by authors.3
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moves. It is completely useless for numerical computations, since 7

enters in all the operators when v _ 0.
o

That the general situation does not change very much for larger e

values is borne out by Fig. 16. The wave transformations and couplings

are essentially the same as for e = 30 ° . In relation to wave propagation

the moving magnetoionic medium is almost simpler than the stationary

medium, in spite of the fact that eight different waves can propagate in

the moving medium.

Obviously, a more careful analysis should be made of the transition

from a moving to a stationary magnetoionic medium (v _ c /n). It is
o o

I I

clear that Inl can never be larger than c /v for the drifting medium.
o o

As v --_ 0 (i.e., _ and _--_ _), the F plot rapidly transforms intoo q

the familiar Appleton-Hartree form.

6. STATIC MAGNETIC FIELD AT ANGLE e TO WAVE NORMAL,

IONIZED STREAM AT ANGLE e s

It is of prime interest to investigate what happens when the stream

makes some angle e-e with the static magnetic field, assuming electro-
s

static field conditions that would make this possible (for example in

a laboratory device).

If we introduce the drift velocity and cyclotron frequency components

v T = VoSine s = _TCo v L = VoCOS8 s = _LCo

(60)

_T = _H sine _L = _H c°se (YL = Ycos8; YT = Ysine)

the dispersion relation corresponding to Eq. 50 can be written as follows,

assuming the stream direction, the magnetic field direction, and the wave

normal to lie in the x-z plane:

(61)

where the e are the proper components of the dielectric tensor for the
Pq

homogeneous medium. We find that

2 y2
X I YT T

-( XIezy =- JYT 1__L1_)2_y2+ I___]

(63)
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x_ [YT(YL-Y_ _o,(e-e.)r 1
E;ZX" ('1__.1.,)2 (1._L1..,)2- y2 - _Tr'

(64)

X1 2 X2

. 1 - r)2__2( --E;yy ( 1 - _ 1- _L 1") 1_y2

(65)

f x; [rL-Y _ ,,o,,(e- e,,)r']EY'x " - J "('1- _L I_) 2_y2

CXX. 1_ X1 {1+ 1 [!I'L -YB ©°.(O-ew)F]2
(_-¢3Lr')2 (_-_3Lr')2-_

(66)

2

YL
- X 2 (1 + 1 _y2 )

(67)

Closer inspection of Eq. 61 reveals that we still obtain an eighth

degree equation in 7. Synchronous-type waves (PtEx _ 0) do not couple
even to this more general system.

From Eqs. 62 to 67 it appears that the original eighth order equation
is only perturbed slightly when I0 - 0 I _ O. We find that the general

S

nature of the interaction between the whistler mode and the stream does

not change appreciably when lO - 0 I has moderate values.
S
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NONLINEAR WAVEPHENOMENA IN PLASMAS

P. A. Sturrock

W. W. Hansen Laboratories of Physics

Stanford University, Stanford, California

[Dr. Sturrock's contribution condensed a series of lectures he pre-

sented at the Advanced Plasma Theory Course of the International School

of Physics 'Enrico Fermi,' Varenna, Italy, July 1962. The Varenna lec-

tures are normally published as a supplement to the Nuovo cimento. The

informing study was supported by the U.S. Air Force Office of Scientific

Research, under grant No. AFOSR 62-326.3

ABSTRACT

This lecture treats the nonlinear theory of waves in plasmas, being

concerned principally with electrostatic waves (plasma oscillations) in

homogeneous plasmas free from magnetic fields, but including discussion

of the coupling of plasma oscillations to electromagnetic waves.

It is recalled that a one-dimensional disturbance of a cold plasma

oscillates indefinitely at the plasma frequency, provided the amplitude

is below the critical value that leads to crossover. It is also recalled

that a plasma of nonzero temperature can support an arbitrary traveling-

wave pattern, provided the velocity distribution is chosen appropriately.

The more general theory of electrostatic waves in plasmas is devel-

oped, with the restrictions that the temperature is taken to be zero and

nonlinearity is treated by a perturbation procedure. This "fairly small

amplitude" approximation is analyzed by the "derivative expansion" tech-

nique. The wave interaction kernel, to which this calculation leads, is

investigated, and it is shown that a certain group of terms leads to

modification of the dispersion relation of plasma oscillations, the form

of this relation being similar to that derived in the linear theory of a

thermal plasma, although the effect is substantially smaller and inde-

pendent. The wave interaction process also leads to the exchange of

energy between waves, and hence to the damping of a test wave due to

interaction with an assembly of weak background waves. The decay time

is estimated, and it is found that for sufficiently long wavelengths,

damping due to nonlinear interaction would be more important than Landau

damping.

The nonlinear theory of interaction between plasma oscillations and

electromagnetic waves is developed by a similar perturbation approximation.

In this analysis, the derivative-expansion technique is extended to allow

for slow spatial variations of amplitudes as well as slow time variations.

This theory demonstrates that, owing to the nonlinear character of the

equations, there is electromagnetic radiation from plasma oscillations,

the radiation occurring dominantly at the second harmonic 2_p.
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The problem of radiation from plasma oscillation is also treated

by Green-function integration of the approximate wave equation, treating

the plasma oscillations as unperturbed by the presence of the electro-

magnetic waves. Formulas for the radiation power and damping time of

the plasma oscillations are derived in this way.
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THE QUASI-LINEAR THEORY OF PLASNL_0SCILLATIONS AND INSTABILITIES

S. E. Bodner and E. A. Frieman

Plasma Physics Laboratory, Princeton University

Princeton, New Jersey

[Mr. Bodner spoke from the contribution of the authors, under this title,

to the Seventh Lockheed Symposium on Magnetohydrodynamics (to be pub-

lished). Their work was accomplished under the auspices of the U.S.

Atomic Energy Commission.3

O
ABSTRACT

The quasi-linear theory, first discussed by Drummond and Pines (I)

and Vedenov, Velikhov, and Sagdeev (2), is designed to treat the long-

time behavior of weakly unstable plasma oscillations. The usual

linearized theory keeps the spatially averaged distribution function

time independent and determines the growth rate of the unstable waves.

The quasi-linear theory considers the time dependent interaction between

the particles and the waves.

Recently (3) the theory has been extended to include the nonlinear

interactions between different modes of oscillation. The goal of the

theory is then two coupled equations. The first describes the time

rate of change of the spatially averaged distribution function; the

second, the time rate of change of the spectral energy density. The

theory has already shown that weakly unstable electron plasma oscilla-

tions tend to stabilize. The asymptotic behavior can be derived.
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RADIO BURSTS FROM THE SUN

M. H. Cohen

Center for Radiophysics and Space Research

Cornell University, Ithaca, New York

ABSTRACT

Type II and Type III meter wavelength bursts from the sun drift

downward in frequency with time. It is commonly accepted that this

drifting results from an agency which moves out through the solar atmos-

phere, exciting the local plasma frequency as it goes (1,2). The details

of the generation of the radio waves, and of their subsequent propagation

through the solar atmosphere to the earth, are not at all clear, but non-

linear and particle-wave interaction phenomena are certainly involved.

The drifting rate of Type III bursts corresponds to an upward ve-

locity of 1/4 to 1/2 c, where c is the velocity of light (2). The

primary agency with this velocity must surely be a stream of charged

particles. A two-step process (3,4,5,6,7,8) is regarded as generating

the radio waves: (a) The particles excite longitudinal plasma waves by

Cerenkov radiation_ (b) the plasma waves are partially converted into

transverse waves, which can propagate freely to the earth, by scattering

on inhomogeneities in electron density.

Type III bursts often have a second harmonic. The Cerenkov spectrum

(5), however, is concentrated just above the local plasma frequency, so

the second harmonic is not generated directly, but rather comes from the

second step, the scattering process. The density inhomogeneities respon-

sible for this frequency doubling must themselves be plasma waves (6).

This is also called combination scattering (3). Thermal fluctuations

excite plasma waves, but it is very difficult to obtain the required

intensity of second harmonic (as intense as the fundamental) by thermal

excitation alone. It appears as though this scattering and generation

of the second harmonic results when the Cerenkov plasma waves scatter

off their cousins, the waves which have been generated a moment before

by some preceding particles. There will be a continual overtaking and

scattering of one wave by another because the Cerenkov spectrum is dis-

tributed both in angle and in frequency, and each component has its own

group velocity.

The fundamental of a Type III burst may be obtained by scattering

of the Cerenkov plasma waves on the ion component of thermal density

fluctuations (3,6). This component consists of damped ion waves and

has a spectrum of its own, so that the Type III spectrum is the convo-

lution of the Cerenkov spectrum and the fluctuation spectrum (6).

A rough estimate shows that about 1031 particles are required to

produce a medium-intensity Type III burst. This assumes that all parti-

cles radiate independently, that is, incoherently. If a volume of i03°
3

cm is assumed for the source region, this gives about I0 particles per

cubic centimeter or several hundred per Debye sphere. But if there are
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many particles per Debye sphere, they must radiate partly coherently.

This idea drastically reduces the required number of particles, so there

might be a few per Debye sphere, radiating partly coherently. The theory

of this situation has not been worked out, although the extreme cases

are well known. Very many particles per Debye sphere is the two-fluid

situation, with the plasma waves generated by a two-stream instability

limited by nonlinearities (3,4); one particle per many Debye spheres is

the independent particle situation, with the plasma waves generated by

incoherent Cerenkov emission (5).

The drifting rate of Type II bursts corresponds to an upward ve-

locity of I000 to 1500 km per sec (9,10). It is thought that the primary

agency with this velocity is a shock wave. Because the theory of the

shock wave and its interaction with the plasma is very involved and in-

complete, the theory of Type II bursts is less developed than that for

Type III.

It is possible that electrons running through the shock front di-

rectly generate the transverse electromagnetic waves that we see as the

Type II burst (ii). But the shock wave may act in some way to accelerate

particles until they radiate Cerenkov plasma waves that scatter off den-

sity irregularities (possibly the shock front itself). In this view the

Type II is a superposition of many small Type III's. This idea is rein-

forced by the apparent clean bursts, like Type llI's, that are sometimes

superimposed (herringbone structure) on the slower drifting Type II back-

ground (9), and by the observation that the second harmonic appears to

come from lower in the corona than the fundamental (6,8). A likely

situation is that both of these processes are going on; the smooth back-

ground of the Type II is somehow generated by the shock wave, and the

sharp superimposed structure comes from particles accelerated by the

shock (12). Laboratory experiments on shock waves in plasma might well

help in selecting the right mechanism for the Type II.

Most Type II bursts have a second harmonic, but not a third. This

is readily explained by the two-step process, as for the Type III bursts

(3,4). A different possibility (Ii) is that the density ratio across

the fast shock wave is 4, and therefore the plasma frequencies just

ahead of and just behind the shock wave differ by a factor of 2. These

two plasma frequencies could be excited essentially simultaneously by

fast particles.

Many Type II bursts show a split structure; that is, both fundamental

and second harmonic bands are split into two bands each, with separation

of the order of I0 Mc/s. This splitting has been thought due to a mag-

netic field, and various attempts to explain the splitting have been

made, generally based on positions of zeros and singularites of the mag-

netoionic dispersion equation. The most plausible suggestion (13) is

that the two frequencies correspond to the extraordinary mode singularity

for e = 0 and e = _/2. Waves are generated near these singularities by

Cerenkov radiation. The waves correspond closely to plasma waves, and

they might he converted into the magnetoionic modes that can escape to

the earth by scattering on the ion component of thermal density fluctua-

tions.
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Polarization observations (14) show that Type II bursts are always

unpolarized, both fundamental and second harmonic, split and not split.

This observation by itself cannot be used to rule on any of the foregoing

ideas concerning Type II's. For lack of genuine knowledge, one can al-

ways assume that the magnetic field is sufficiently disordered in the

vicinity of the shock wave that the integrated effect over the whole

source is an unpolarized radio wave, regardless of the mechanism.

Type III bursts, on the other hand, are often in part circularly

polarized (14), and more rarely show weak linear polarization (15). It

is not clear whether these polarizations result from something intrinsic

in the source or from some effect of the propagation through the long

plasma path to the earth.
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SOME INVESTIGATIONS OF

INSTABILITIES IN ONE-DIMENSIONAL PLASMAS

John Dawson

Plasma Physics Laboratory

Princeton University, Princeton, New Jersey

[Dr. Dawson's contribution was based on a paper, titled the same, which

he presented at the University of Paris, September 1962. The text has

been published in Service de Physique des Plasmas, vol. III, Laboratoire

des hautes energies, Universite de Paris. The work reported was accom-

plished under the auspices of the U.S. Atomic Energy Commission.]

ABSTRACT

One-dimentional plasma models (1,2) are used to investigate the

nonlinear behavior of a number of plasma instabilities. Three unstable

situations are investigated: case I, double stream instability; cases
II and III, current instabilities.

In case I, two cold streams of electrons pass through each other

and through a fixed neutralizing background (3). The growth of the

unstable waves is accurately given by the linearized theory until the

density perturbation becomes comparable to the mean density. At this

time the streams rapidly break up, the velocity distribution becomes

roughly Maxwellian, and the instability ceases.

When an electron current is passed through a plasma composed of

electrons and cold, heavy, but movable ions, the plasma is unstable (2).
In case II, the streaming velocity of the electrons is less than their

thermal velocity, but greater than the velocity of ion waves (kTe/Mi) !/2,
resulting in unstable ion waves. In case III, electron streaming ve-

locity is greater than electron thermal velocity. For both cases , the
current is maintained constant by an external electric field.

The high current problem exhibits violent instabilities, which

result in an anomalously large resistance and rapid heating of the

electrons. The instability turns itself off when the random electron

velocity becomes equal to the streaming velocity.

For the low current case, the plasma quickly stabilizes itself by

flattening out the velocity distribution in the vicinity of the phase
velocity of the ion waves, and there is little indication that the
plasma is unstable.
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SURVEY OF PROPAGATION PHEN(_]_A, LINEAR AND NONLINEAR,

IN AN INFINITELY CONDUCTING COMPRESSIBLE FLUID

J. Bazer

Courant Institute of Mathematical Sciences

New York University, New York City

AB STRACT

The propagation of weak hydromagnetic discontinuities (for example,

weak shocks) is discussed in Ref. I. The medium is assumed to be a

nonviscous infinitely conducting compressible fluid. The undisturbed

medium is not required to be homogeneous, so that in particular the

density, fluid velocity, and magnetic field intensity may vary from

point to point. An initial discontinuity is assumed given on an arbi-

trary initial surface. The wave fronts that evolve out of this surface --

there will be six of them, in general -- are obtained as solutions of

first order partial differential equations.

These "eikonal" equations are solved, as in geometrical optics,

by means of rays that are shown to satisfy Hamilton's equations and

Fermat's principle. The hydromagnetic analog of Huygens' wave front

construction is described. To complete the geometrical solution, the

variation of the disturbance strengths along the rays is determined in

terms of the disturbance strengths on the initial surface. A noteworthy

feature of this solution is that the fundamental modes of propagation --

the slow, Alfven, and fast modes -- are uncoupled as long as the medium

is free of diffracting objects and surfaces of discontinuity.

The theory described in Ref. 1 is closely related to the time-har-

monic small wavelength type of geometrical solution, a detailed study

of which is given in Ref. 2. The two theories may in fact be subsumed

under one general formalism (2, page 154). As an illustration of the

general theory, Ref. 2 (pages 160-163) gives the complete geometrical

solution for the propagation of Alfven disturbances in a dipole field,

with the aid of explicit formulas. Fast wave propagation in various

types of inhomogeneous magnetic fields is also briefly discussed.

The problem of reflection and refraction of slow, Alfven, and fast

disturbances at surfaces of discontinuity, possibly curved, is treated

in Refs. 2 and 3. The hydromagne%ic analogs of "Snell's" law are

derived, and their relation to Huygens' wavelet construction is eluci-

dated. It is shown that the introduction of an appropriate set of

direction angles for the unperturbed magnetic field, on each side of

the discontinuity, (a) reveals the symmetries of "Snell's" laws, (b)

leads immediately to a simplification of V. C. A. Ferraro's laws relating

to the reflection and refraction of Alfven waves, and (c) makes possible

a simple graphical method for determining the angles and speeds at which

the various reflected and refracted waves emerge.

The nonlinear hydromagnetic piston problem is treated in Ref. 4,

with the aid of the methods and results developed in Refs. 5 and 6.
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The linearized piston problem is di_$ussed in Ref. I. The geometric

setup is as follows. An infinitely conducting rigid magnet fills the

half-space x < 0; the half-space x > 0 is filled with a nonviscous infi-

nitely conducting compressible fluid. It is assumed that the magnetic

field is perpendicular to the interface, and that the fluid is at rest

and everywhere uniform. The magnet is set in motion with a uniform

velocity transverse to the direction of the magnetic field. This motion

causes both a longitudinal motion and a transverse motion, specifically

a fast hydromagnetic shock followed by a slow centered rarefaction wave.

The effect of this pair of wayes is to adjust the motion of the medium

to the transverse motion of the magnet.

In the final steady state, which is achieved after the waves have

propagated out to infinity, the fluid has everywhere the same transverse

velocity as the wall, and a transverse magnetic field is present although

none existed initially. A striking and basically nonlinear aspect of

this motion is that a region of cavitation (a vacuum between the magnet

and the fluid) can be created if the transverse velocity of the magnet

is sufficiently large compared with the sound speed in the initially

undisturbed medium.
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ON THE NONLINEAR THEORY OF MULTI STREAM ELECTRONIC DEVICES

C. L. Dolph and R. J. Lomax

Electron Physics Laboratory

The University of Michigan, Ann Arbor, Michigan

I NTRODUCTI ON

Most _----._n°nlinear-.................theories of multistream devices such as the klystron,

trave.l±ng_wevetube, and backward-wave oscillator are based upon a cold

plasma approximation in which a ballistic theory is developed from the

equations of continuity and force in Lagrangian form. The problem of

overtaking electrons, and the multiple streaming which then occurs, can

be overcome instead by introducing a velocity distribution. The density

function thereby defined is always s_ngie'valued _nphase space. This

offers the possibility of using the velocity distribution as an artifice

to solve problems in which its effect is expected to be small and to

attack problems where its effect is expected to be significant.

The density method has frequently been used in the study of neutron

transport problems as they occur in the design of nuclear reactors, and

considerable effort has been directed toward the development of numerical

methods appropriate for high speed digital computers. This paper presents

a procedure similar to the so-called spherical harmonic method of neutron

transport theory, in a form suitable for a wide variety of microwave and

plasma devices. The expansions in terms of spherical harmonics of neutron

transport theory are replaced by expansions in terms of Hermite functions,

utilizing the systematic development of such expansions described by

Korevaar (I) under the name pansions.

Other methods developed for neutron transport theory can also be

adapted to microwave devices. In particular, the usefulness of the method

of invariant imbedding as developed by Bellman (2) and wing (3) should

certainly be investigated.

The use of expansions in Hermite functions, or equivalently the

associated Hermite polynomials, is not new in transport theory. The

well-known paper by Grad (4) in which the thirteen-moment approximation

to the Boltzmann equation is developed, is based on a similar expansion

in terms of generalized Hermite polynomials. Many of the properties of

these functions, defined by Grad in Ref. 5, will undoubtedly prove use-

ful in later extensions of the one-dimensional problem to which the

present discussion is limited.

To gain experience and insight into the advantages and disadvantages

of the Hermite expansion method, the authors have so far concentrated on

the one-dimensional traveling-wave tube problem as determined by the

transmission-line approximation used by Brillouin (6), for example, and

the transport equation now known as that of Landau and Vlasov. The cor-

responding linearized problem has been treated by Rynn and Watkins (7).

At this writing, the detailed work on numerical procedures and program-

ming has caused some delay, and it is not yet possible to present results
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that can be comparedwith the existing nonlinear ballistic theory for
the traveling-wave tube. Because of this, attention will be concentrated
on the Landau-Vlasov transport equation, which is commonto all similar
problems.

Specifically then, the method will be developed for the equation

_f _f Be _f
_-_+ v _x + _ _x _v - 0 (_ = e/m) (i)

subject to the normalized boundary conditions for a tube of unit length

f(0,v,t) = f(_)(v,t)

f(1,v,t) = 0

(v > 0) (2)

(v < 0) (3)

f(x,v,O) = f(°)(x,v) (-I < x < i) (4)
m

under the assumption that _e/_x is known. In an actual problem, _e/_x

would represent the sum of several voltage gradients and could include

not only the transmission-line contribution but also a space-charge con-

tribution and a d-c contribution. Because at least part of this gradient

is affected by Eq. I, realistic problems would involve a natural iteration

process superimposed on the discussion to be given here. Full details

necessary for this in the traveling-wave tube problem, as well as detailed

proofs of the development to be sketched here, will be published elsewhere

after numerical solutions have been obtained.

BASIC EXPANSION RELATIONS

In contrast to the neutron transport theory, it will be assumed that

the distribution function f(x,v,t) can be represented as

0o

f(x,v,t) = 7. Pk(X,t)Wk(V) (5)
k=o

where the Hermite functions Ck(V) are defined by the equation

e-V2/2Hk(V)

_k(V) = I/4 2k/2 )1/2 (6)
75 (k!

The Hermite functions are readily seen to be orthonormal over the real

velocity line, and as demonstrated by Korevaar (I) they form a complete

set for even a class of generalized functions wide enough for most ap-

plications. Specifically, as shown by Widlund (8), this class includes

the generalized functions considered by Lighthill (9). The "good" func-

tions of Lighthill, considered as functions of velocity, are precisely

those functions g(v) admitting the expansion

co

g(v) = 7. gk_k(V)
0

(7)
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where the coefficients gk have the property that there exists a number

M(n) such that the inequality

Igk[ < M(n)/(k + 1) n

holds for arbitrary n. Moreover, if the symbol (u,v) is defined by the
relation

CO

(U,V) = _ U(X)V(X) dx (8)

_nr_

the class of generalized functions of Lighthill is precisely those func-
tions G(v) for which the series of numbers

0o

E (G, _k) (_k,g)
k=o

(9)

converges for all g in the class of good functions. Finally, the series

will converge only if there exist positive constants A and n, independent
of k, such that the inequality is

l(G,_k) [ _ A(k + I) n (10)

Delta function singularities do not usually occur in velocity space,
but their occurrence would cause no difficulty since it is readily veri-

fied that 8(v) admits the representation

1/4

5(v) " Z (-1)k[(2k)!]l/2
2kk! ¢2k (v)

k=o

(11)

in which the last criterion is satisfied.

Further desirable properties follow from the fact that if the Fourier

transform of a function u(v) is defined by

CO

F(u) - 1 _ u(v)e -i°*¢ dv (12)
___

then it is readily verified that

F(_k) = (-i)k_k(ff) (13)

In particular, this implies that all generalized functions in the sense

of Lighthill have Fourier transforms that lie in the same class. In

addition this property permits a partial realization of an idea enunci-

ated earlier by Dolph (I0), in that it permits the evaluation of
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quantities such as density and current without knowledge of the full

distribution function. For example, the density is defined by

00

0 = _ f(x,v,t) dv

--OO

(14)

and this is readily seen to be given by

0 =Jr9 F(f)l__o

QO

= _ Z psk(X,V)_ k(O)(-i)ek (15)
k=o

wherever f(x,v,t) admits the expansion Eq. 5, since

_2k+_ (0) = 0
(16)

In the application of this method to the transport equation it will

also be necessary to make use of the relations, proved for the example

in Ref. I, that if f(x,v,t) admits the expansion Eq. 5 then

I + +
0

and

co

_f(x,v,t) 1 "_ k _ (v) (18)
_v = + Pk+l - "2 Pk-x k

REDUCTION OF TRANSPORT EQUATION TO A SYMMETRIC HYPERBOLIC SYSTEM

For reasons which will be explained, it is more advantageous to

apply the machinery of the previous paragraph to Eq. I after a trans-

formation of the form

f = ge -v2/2 (19)

Under this transformation, Eq. i yields

-_t+v _x -_Tx _v v

If the pansion expansion

g(x,v,t) = Z gk(x,t)Wk(V) (21)
o

128



is now introduced into Eq. 20 and the orthogonal properties of the Hermite

functions are used, the followin_ infinite set of coupled equations results:

= _ _x 2 _ k-l (k = 0,I,2, ...) (22)

If the one-parameter family of infinite Jacobi matrices is defined by
the relations

A(@) = [amn(O)}

and

amn(e ) = e 8m+_ + e + 8 (23),n m-l ,n

and the infinite-dimensional vector g = (gl, g2, ...) is introduced, this

infinite system can be written in the formally self-adjoint form

_g ___ bei _t + i [A(0)_] = - _ _x [A(_/2) - A(0)]_
(24)

under the assumption that _e/_x is a known function. That the system is

formally self-adjoint follows from the readily established identity in

which the superscript T refers to the transpose of the indicated quantity:

_[__h*{i _ _e [A(Tr/2)- A(0)]g_+ i _x [A(0)g] + _ _x

_j_T{i 8hT Be A(0)]_hT}*_ dt_-- + i _ [A(0)_h T] + n _x [A(Tr/2) - dx

= _ i [h_ dx - h*i A(0)_ dt] (25)

For any actual computation it is necessary to truncate the system

Eq. 22. If one sets

gk = 0

amn(_ ) = 0 (k, m, n _ N) (26)

the resulting system is an N X N determined system. However, as in the

spherical harmonic method [compare the discussion in Weinberg and Wigner

(ll) or Kofink (12)], such a truncation has the effect of introducing a

fictitious source term in either Eq. 1 or Eq. 20. This follows from the
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fact that the first neglected equation

l_/bgN+l be gN+l)/N\_[ _g-_N-I

leads to an inconsistency unless the term

i)_x gN- = 0 (27)

be gN-l) (28)

is added to the right-hand side of it. Reversing the process that led

from Eq. 20 to the truncated system yields, instead of Eq. 20, the

equation for an approximate g, say ga of the form

bga bga be [ bga

vT + Vga)

be 1)_l _ gN- _N (v) (29)

This in turn implies that the corresponding approximate distribution

function fa satisfies net Eq. i but

bf b_ bf
a a be a

= (_)--(_x-½ I _ _xgN-ibe ) e-V2/_¢N(V ) (30)

Therefore, in general, the truncation introduces a source except for those

velocities corresponding to the zeros of @N(V). These are just the zeros

of the Nth Hermite polynomial. But since

_ vke-VS/2@N(V ) dv = 0 (k = 0,I,... N - I) (31)

it follows from Eq. 30 that the first N moments of the approximate dis-

tribution function fa are governed by the same differential equations
as those which determine f, and that in particular they are unaffected

to this order by the fictitious source term. Moreover, since

_ e-V2/2¢N(V ) dv = ITz/4 _ Mo(V)¢N(V) dv = 0 (32)

the fictitious source term contributes approximately equal amounts of

positive and negative error on the average, so that its over-all effect

on the approximate distribution function is less than would otherwise

be the case.
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The substitution of g for f has one other advantage. From the rep-
resentation Eq. 21 it follows that the coefficients are given by

co --V2/_ co

= _ feV2/e Hk(V)e _ f(V)Hk(V ) dv

gk l/_ .)l/e dv = 1/4(2kkw)i/2_co 7F (2kk ! _co 7F .

(33)

so that the density is given directly by

g
O

(34)

while the current is given by

1/4
7[

J - 2z/2 gz
(35)

This remark, coupled with the foregoing discussion of the agreement of

the moments up to order N, fully justifies the use of Eq. 20 in place
of Eq. i.

To reduce the truncated system Eq. 22 to symmetric hyperbolic form,

it is convenient to use the following theorems, which will be stated here

without proofs since these are quite lengthy and involved and are given

elsewhere (13).

Theorem I. The N × N Jacobi matrix

_(0) = [aij(O)] (i, j = 0,I .... N - i)

ai j = ,J + + 2 5i_z,j

has the following properties:

(a) The determinant IAN - kI I = (-I)NHN(_)/2N; hence the eigenvalues

of AN are the roots of HN(k ) = O.

(b) The orthonormal eigenvector _k associated with the eigenvalue

k k has the components

1

(_ = 0,I,... N- I)

where Ck is a normalization constant given by

C k =

2N+IN !

2
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Theorem 2. Let U N be the orthogonal matrix, whose elements are

given by

2N+ZN,I-Hi( j)
uij = ( 2±i! /

while those of its inverse U N - 1 are given by

)-I = )T
(Uij = Uj i (Uij

and let iB N = A N (lr/2). Then

where D N is the matrix with elements (dij), dij = k i 5ij; and

UNZBNU N = CN

where C N is the matrix with elements (cij):

cij = I/(k i - kj) (i _ j)

= 0 (i = j)

If the transformation of this last theorem is now applied to define

the vector _N by means of the relations

the truncated system Eq. 22 takes the form

8Wk _Wk (Be N_I 1 )
+ k k _ = n _x kkWk - _=o kk_-k_ w_

_k

(37)

which, under the assumption that _e/_x is known, is in the standard or

canonical form for a system of partial differential equations of hyper-

bolic type in two independent variables. The N distinct characteristics

of this system satisfy the equations

dt 1 dx
ds _ ds - kk (38)
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where

_(xQ = o (k = 0,I,... N - I) (39)

BOUNDARY AND INITIAL CONDITIONS

A typical well-set boundary value problem, appropriate as an example
for the traveling-wave tube, requires that the followiD_ quantities be
specified:

f(x,v,O)= f(°)(x,v) (o_< x_< 1)

f(O,v,t) = f(1)(v,t) (v > 0) (40)

f(1,v,t) = 0 (v < O)

In these expressions it is assumed that f(o) and f(x) are known functions.

From this information it is necessary to deduce appropriate initial and

boundary values for the Wk(X,t ) functions that occur in Eq. 37. Since

the boundary values cannot be satisfied exactly for all values of v, as

in the spherical harmonic method it is convenient to take an even trun-

cation of the system Eq. 22 so that an even number of roots are involved

in the characteristic direction of the hyperbolic system. Thus if the

roots of H2N(% ) = 0 are divided into positive and negative roots and the

positive roots are denoted by ko,.., kN_ 1 and the negative by kN,...
k2N_ 1 where

kN+ , = - k_ (_ = 0,I,... N - I)

it is convenient to satisfy the condition at x = 0 for all velocities

v = kk, k = 0,I,... (N - i), and to satisfy the condition at x = 1 for

all velocities v = kk, k = N, N+I,... (2N - I). If g(O) and g(1) are

defined by the relations

g(O) = f eVS/2
o

g(_) = f e v2/2
1

(41)

it may be shown with the aid of the transformation of Theorem 2 that

2N-I

g(x,v,t) = l

j=o

and that

Wk(X,t) =

@2N (v) w0(x,t)
_t.-v

J

g(x,Xk,t)

_2N+l(_k )

(42)

(43)
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Equation 42 is exact for all values of the velocity only if g(x,v,t) can
be represented by a finite series of the form Eq. 21. For an arbitrary

distribution function, however, it can be satisfied at the 2N distinct

zeros of H2N(_). Imposing this requirement leads to the following boundary

and initial conditions for Wk(X,t):

g(O)(X,Xk)

Wk(X,0) = (k = 0,I,... 2N - I) (44)
_2N+l(kk)

g(Z)(%k,t )

Wk(0,t ) = (k = 0,1,... N- 1) (45)
@2N+l(kk )

Wk(1,t) = 0 (k = N,N+I,... 2N - i) (46)

since ¢2N+l(kk) is nonzero when kk is a root of H2N(% ) = 0.

METHOD OF CALCULATION AND CONVERGENCE CRITERIA

The hyperbolic system Eq. 37, subject to the boundary and initial
conditions Eqs. 44, 45, and 46, has been programmed for an IBM 7090

computer by use of a difference scheme essentially the same as that

developed by Keller and Wendroff (14) for the neutron transport equation.

Some simplifications are possible for the class of problems under con-

sideration here, but the details are still involved and will be given
elsewhere. The same situation prevails for the proof that the difference

approximation really does converge to the hyperbolic system provided that
certain relations are maintained on the mesh ratios.

The situation concerning the convergence of the solutions of the

hyperbolic system to the corresponding solution of the transport equation

is less satisfactory. Even for the extensively exploited spherical har-

monic method, no general convergence proof seems to have been established.

Such a proof has, however, been carried through by Kofink (12) at least

semirigorously for the case of the Milne problem in neutron transport

theory. The appearance of the fictitious source term results in a non-

uniform convergent process, and much care must be taken in this exactly

soluble problem to ensure that the spherical harmonic method will yield

in the limit the well-known Wiener-Hopf solution. The situation is much

better as far as convergence of the moments is concerned, and the exact

treatment of the problem, as well as the experience gained from use of

the method, seems to indicate that the method is eminently satisfactory

for them.

Though we do not yet have a complete convergence proof, we have been

able to use the theory of Jacobi matrices, as developed in Stone (15) and

Smirnow (16), to prove that the truncated Jacobi matrices introduced

earlier are in fact approximating operators to one and the same essen-

tially self-adjoint operator in Hilbert space; and moreover, that the
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Jacobi matrices A(e) are all unitary equivalent C matrices in the sense
of Von Neumann(compare Smirnow). The resulting operator has a simple
continuous spectrum covering the entire k axis. Hopefully, these results
will eventually permit a rigorous proof of the convergence of the solu-
tions of Eq. 37 to those of the transport equation in a Hilbert space
context, at least for the case where it is assumedthat _e/_x is known.

GENERALOBSERVATIONSONTHEMETHOD

Although our actual numerical experience with the described method
is still much too limited to permit firm conclusions, it tends to support
the over-all conclusions reached by Weinberg and Wigner (ii) for the case
of the spherical harmonic method. The weaknessof their method is also
present here. It consists essentially of the appearance of the Gibbs
phenomenon,or the nonuniform convergence of expansions of the form Eq.
21, in the neighborhood of an interface separating two media -- in our
case at x = 0 and x = I. This phenomenoncauses the calculated approxi-
mate distribution function to becomenegative in someregions where it
is supposed to vanish identically. The effect on the momentscalculated
by this meansis muchsmaller, since the resulting oscillation from posi-
tive to negative values contributes much less to any momentintegral than
would the negative values alone. To any problem where this might prove
serious the modifications devised by Yvon (17) for the neutron case could
be adapted, but not without a considerable increase in computational com-
plexity.

Nothing in our experience as yet would seemto contradict the fol-
lowing general statement of Weinberg and Wigner (ii):

At present, with so muchof the practical work on reactor

design being done with large digital computers, the arguments in

favor of one method of approximation rather than another tend to

center around the question of how well suited the method is for

digital computers. Actually as the computers become larger the

choice between methods becomes less and less clear; any method

which converges will do if the computer is large enough. This

viewpoint certainly has practical merit; however, convenience

for a digital computer is hardly a substitute for intrinsic

mathematical beauty or physical relevance. In this respect the

spherical method is most satisfying; its first order is identical

with diffusion theory, and its higher order shows the deviations

from diffusion theory very clearly.

Finally, as we gain experience, we confidently expect that the method

developed here will eventually play the same role in a wide variety of

electron-plasma problems as the spherical harmonic method does in neutron

transport theory.
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BEAM-PLASMA AMPLIFIER EXPERIMENTS

Paul Chorney

Microwave Associates, Inc.

Burlington, Massachusetts

Experimental work is described that is directed toward demonstrating

the feasibility of using the beam-plasma interaction to amplify millimeter

waves. Discharges with plasma frequencies near 60,000 Mc were generated

by means of a dual hot-cathode Penning discharge at low pressures. The

densities were measured by Langmuir probe techniques. Extensive amplifi-

cation experiments performed at 10,680 Mc produced net gains as high as

25 db and electronic gains as high as 60 db. The original study vehicle

was redesigned, and preliminary results show substantial net gains.

Several research programs are in progress at Microwave Associates

to determine the feasibility of using the beam-plasma interaction to

amplify microwaves. Most of the work has been concerned with the am-

plification of millimeter waves. Toward this goal, interaction experi-

ments have been conducted in X band, and densities have been generated

with corresponding plasma frequencies in the millimeter wave region.

So_/ of this work is described here.

_RINCIPLE OF BEAM-PlASMA INTERACTION AND AMPLIFICATION

Shown in Fig. 1 is a block diagram of a beam-plasma amplifier. It

L

" is similar to any linear beam amplifier, except that the interaction

region is replaced by a plasma. In this amplifier an electron gun deliv-

ers an electron beam to an input coupler, an interaction space, an output

coupler, and finally to a collector. The couplers usually are cavities,

helices, or other conventional tube couplers.

The operation of the amplifier is as follows. A signal is introduced

into the input coupler, and the input coupler transduces the signal to a

density modulation of the electron beam, or a bunching of the electron

beam. The modulated beam drifts into the plasma interaction region, where

the modulation of the beam grows exponentially because of the beam-plasma

interaction. (The beam-plasma interaction we speak of here is commonly

known as the two-stream instability.) The modulated beam emerges from

the plasma with enhanced modulation and passes through the output coupler,

where the modulation of the beam is transduced to microwave energy. If

the couplers and the plasma are properly designed, the output signal will

be greater than the input, resulting in amplification.

The very elementary one-dimensional theory for an electron beam

drifting through a cold, collisionless plasma predicts the propagation

constant

2 l

k = _--+ 1 - _.Pro (I)
V -- V 032O O
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when the dependence exponent (j_t - jkz) is assumed. In Eq. 1, _ is the

radian frequency, v o is the drift velocity of the beam, _pp is the plasma
frequency of the plasma, and _pb is the plasma frequency of the beam.
For frequencies below the plasma frequency, k is complex, the imaginary
part being given by

v ]
0

(2)

Equation 2 is sketched in Fig. 2, where it is seen that the gain

becomes infinite at the plasma frequency. This is the result of a very

idealized model. Figure 2 also shows qualitative results for a less

idealized model, that is, one which accounts for finite plasma tempera-
ture, collisions, finite geometry, and magnetic fields. The infinite

gain at the plasma frequency becomes finite, but the gain per unit length

is very large compared with that of interaction mechanisms normally used

in microwave tubes. Gains of 15 to 20 db/cm are typical.

Besides the very high unit-length gains, the beam-plasma interaction

offers other attractions. High powers can be handled at high frequencies

(millimeter waves), since delicate mechanical structures are replaced by

the gaseous plasma. In conventional microwave and millimeter-wave devices,

beam interception and rf dissipation on delicate interaction structures

limit power-handling capability. Employing the plasma as an interaction

structure also eliminates the difficult problem of fabricating mechanical

structures with dimensions necessarily much smaller than the wavelength
of interest.

PLASMA GENERATION EXPERIMENTS

Several methods of generating high plasma densities were considered.

The method found to be the most practical and most efficient was the

dual hot-cathode Penning discharge. The experimental tube constructed

to study this discharge (Fig. 3) contains a Langmuir probe mounted on a

movable metal bellows that allows the probe to be positioned across the

diameter of the column. The spacing between cathodes is 1.5 in., and

the cathode diameter is 0.250 in. The cathodes are normally run at about

900 ° C. The gas atmosphere is mercury vapor, and the discharge tube is

operated in an axial magnetic field.

Some typical data from this discharge tube are shown in Fig. 4,

where plasma density is plotted against discharge current. Note that

the density seems to be linear with the discharge current. The spread

in the points is due to heating of the probe while the curves were being

recorded. The electron density and the plasma temperature are obtained

from the Langmuir probe curves. The plasma temperature was about 2 ev.

The magnetic field was 2600 gauss, and the background pressure was about

2 X I0 -s Torr. The highest densities shown in Fig. 4 correspond to plasma

frequencies of about 60,000 Mc. The voltage drop across the tube in pro-

ducin_ these plasma densities is about 15 v. The power expenditure is

therefore quite modest, about 75 w.
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The percentage of ionization is very high. At the pressure of

2 X 10 -3 Torr. the neutral density is about 6 X I013 cm 3 . Low pressures

are necessary in beam-plasma amplifiers, because the mean free path of

the electron beam must be long so that the beam passes through the tube

without being scattered appreciably.

AMPLI FICATION EXPERIMENTS

Several vehicles have been constructed to study beam-plasma amplifi-

cation. In one of these tubes, shown in Fig. 5, the cavities are coupled

by means of loops to miniature coaxial lines. The cavity resonators are

of the common klystron variety, being re-entrant so that very strong

electric fields appear on the axis in the vicinity of the beam. The

plasma is generated by a Penning configuration. The distance between

cathodes is 1.5 in., and their diameter is 0.250 in. as in the plasma

testers. A hole in the center of each cathode allows the passage of the

electron beam, which is 0.040 in. in diameter and can be adjusted to

deliver several milliamperes at a few thousand volts. A detail of the

construction is shown in Fig. 6.

Extensive amplifier data was gathered from such a study vehicle.

The experiments were conducted at a frequency of 10,680 Mc, and the

magnetic focusing field was 1400 gauss. Table 1 gives some typical

amplifier data. In this table, I b is the beam current, V b the beam

voltage, and Ip the plasma discharge current. For each setting two

gains are given, net gain and electronic gain. Net gain is defined as

the decibel equivalent of the ratio of output power to input power in

the presence of the plasma. Electronic gain is the decibel equivalent

of the ratio of output power in the presence of the plasma to output

power in the absence of the plasma, the conditions on the beam being

identical. The difference between the net gain and the electronic gain

is attributed to loss in the couplers. The electronic gain may be

regarded as the amplification due to the beam-plasma interaction.

TABLE I. Typical Amplifier Data

Ib, Vp,
ma volts

1.05 715

1.50 960

1.31 715

1.77 755

3.30 880

Ip, Net Gain, Electronic
ma db Gain_ db

28 I0 45

35 13 52

32 18 61

33 22 66

33 25 61

More amplifier data are shown in Fig. 7, where both electronic gain

and net gain are plotted as a function of the perveance of the beam. The

perveance K is defined by K = Ib/Vb 3/2, which is directly proportional

to o
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FIG. 5. Beam-Plasma ampli-
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A more refined study vehicle, recently completed, is shownin Figs.
8 and 9. The essential dimensions of the tube are identical to those of
the tube described earlier. The new vehicle is constructed entirely of
metal and ceramic disks, a type of construction offering many advantages.

For instance, the cavities can be tuned, whereas the tuning of cavities

in the previous tube was fixed. Incorporated into this vehicle is an

improved gun, which employs a hollow cathode. Only preliminary experi-

mental data are available at this time. A net gain of 30 db has been

observed with an electron beam of 1 ma at ii00 v, a frequency of II,000

Mc, and a focusing magnetic field of 1300 gauss.

CONCLUSIONS

Experiments with the equipment here described have demonstrated that

substantial net gains can be obtained from the beam-plasma interaction.

These experiments have been conducted at relatively long wavelengths as

compared to our ultimate goals. Three-centimeter wavelengths have been

studied, whereas 4 mm wavelengths and shorter are of interest. The plasma

densities necessary for the amplification of 4 mm wavelengths have been

produced quite conveniently. The feasibility of amplifying millimeter

waves by means of the beam-plasma interaction has yet to be proved, but

present results are encouraging.
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EFFECTOFNONUNIFORMPLASMADENSITYON
ELECTRONBEAM-PLASMAINTERACTION

G. A. Swartz and L. S. Napoli
RCALaboratories

Princeton, NewJersey

ABSTRACT
N65-_,,_6o

A 23 kMc microwave amplifier that utilizes the two-stream instability

as a gain mechanism was constructed. The two-stream instability is gen-

erated by passing a 1400 v electron beam through a cesium plasma 3 cm
long, with a density that can be varied in a range up to i0Is ions/cm s.

The plasma is generated by a Penning discharge. Microwave power is cou-

pled on and off the beam with helices. The electronic gain shows a

maximum at one or more measured plasma densities. The number of maxima

depends on the magnetic field, percent ionization of the plasma, elec-

tron temperature of the plasma, and the input power level. The maximum

electronic gain is 40 db, and the net gain for the tube is 8 db. A

probe placed in the plasma 1.5 mm from the beam indicated an increase in

the saturated ion current to the probe as the microwave pow_1 was in_u_/

creased above I mw. _L__ _

Numerous theoretical and experimental investigations of the two-

stream plasma instability have been carried out in recent years (1-8).

In our investigation of an electron beam interaction with a high density

cesium plasma, some interesting effects were observed that are believed

related to the plasma nonuniformity.

Observation of the rf signal gain as a function of plasma density

showed a maximum at one or more plasma densities. The number of maxima

and their relationship to the measured density depended on such factors

as magnetic field, percent ionization of the plasma, electron tempera-

ture, and power level of the input signal. The observations indicate

that a plasma density variation along the electron beam radius is respon-

sible for the occurrence of multiple maxima.

EXPERIMENTAL TUBE

A 23 kMc microwave amplifier that utilizes the two-stream insta-

bility as a gain mechanism was constructed. A schematic of the tube is

shown in Fig. i. Electrons from a Phillips "L" cathode are accelerated

to 1350 v, and the electron beam is sent through an input helix coupler,

a cesium plasma 3 cm long, and an output helix coupler, to a collector.

The diameter of the beam is determined by a 0.035 in. ID drift tube in

front of the gun. A Penning discharge is used to generate the plasma.

The plasma density can be increased to above I0Is ions/cm s. A cylindri-

cal probe 0.025 cm in diameter and 0.5 cm long is placed in the plasma,

0.5 mm from the anode wall and parallel to the beam axis. The probe

lead is shielded from the plasma region back to the glass envelope.
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Holes 0.050 in. in diameter in the faces of the Penning discharge cath-

odes allow the electron beam to pass through the plasma. A magnetic

field parallel to the beam axis serves to confine the electron beam and

the plasma electrons in the discharge.

Cesium vapor is supplied to the discharge through a conical feed

tube extending from a cesium well beneath the discharge to a hole in the

discharge anode. The cesium well temperature is kept near 180 ° C. A

water jacket is placed around the drift tube of the electron gun to cool

the drift tube and the glass walls separating the electron gun region

from the rest of the tube. Cesium condenses on the glass walls and drift

tube. Thus the amount of cesium vapor that gets into the electron gun

region is minimized, and the vapor pressure in the gun region is kept
below 10-5 mm Hg. This allows operation of the gun at voltages up to

2000 v. The cesium is recycled via a tube connecting the cesium well to

a second water-cooled condenser. The remaining walls of the tube section

that houses the helices and plasma are kept at a temperature above i00 °

C to ensure that all the vapor will condense on the water jacket walls.

The input and output helices are installed perpendicular to the

broad face of a K-band waveguide, with triple stub tuners in the wave-

guide to provide a proper match between the waveguide and helix. One

end of the waveguide is shorted, and the other end is open and butted

against the glass envelope. Another section of waveguide is butted

against the outside of the glass envelope, and microwave power is trans-

mitted through the glass envelope. It is expected that the system would

be improved if the waveguides passed through the envelope, but it proved

to be adequate for the experimental investigations described.

OPERATI ON

The tube is capable of operating as an amplifier, or with the addi-

tion of a feedback loop, as an oscillator. Microwave power fed through

the input waveguide to the input helix induces a space-charge wave on

the electron beam passing through the input helix. The wave is amplified

as the beam penetrates the plasma. Microwave power is extracted from

the space-charge wave as the beam passes through the output helix. The

microwave circuit is shown in Fig. 2.

The circuitry for the operation of the tube is shown in Fig. 3.

The electron beam current to the collector is about I ma. The anode of

the electron gun is raised to a potential several hundred volts positive

with respect to the drift tube, to form an ion trap and protect the gun

cathode from ion bombardment. The collector is biased positive with re-

spect to ground to prevent secondary electrons from traveling back along

the beam.

Power for the discharge is supplied from a constant voltage source,

and the discharge voltage is kept between i0 and 15 v. The most stable

plasma, as indicated by the probe, is produced with an II v discharge.

If the discharge voltage is less than I0 v, the probe indicates a 50

percent density fluctuation at a frequency of I00 kc. In an II v dis-

charge, the density fluctuation is reduced to i0 to 15 percent a

frequency of about I Mc.
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RESULTS

The variation of output power with plasma density was measured in

two different ways. In the first method, the discharge voltage is main-

tained at II v and the vapor pressure in the cesium well is slowly

increased. The rectified rf output (detecting-crystal current) is meas-

ured on an x-y recorder and plotted as a function of the ion current to

the probe. In the second method, the discharge power is supplied by a

constant current source. The discharge current and the cesium vapor

pressure are maintained high enough to ensure a plasma frequency in the

discharge greater than the applied frequency. The discharge anode and

cathode are then shorted together, and the plasma is allowed to decay.

During the plasma decay, the ion current to the probe and the output

power are observed as a function of time on an oscilloscope.

Measurement by the first method of the electronic gain as a function

of the probe current is shown in Fig. 4 for various input powers. The

electronic gain in decibels is defined here as the log of the ratio of

the output power with plasma present to that without plasma present. As

the input power is increased, power saturation occurs, the gain decreases,

and two gain maxima appear. The separation of the maxima increases with

input power.

After much use of the tube, two gain peaks instead of one occurred

at very low input powers, as shown in Fig. 5. The electronic gain de-

creased by I0 to 15 db. At intermediate input power three gain peaks

were observed. Presumably, some of the plasma properties may have been

altered by some deterioration of the plasma cathodes. Figure 6 shows

the output power in arbitrary units as a function of the probe current

for various intermediate input powers. At 390 _w input there are two

obvious widely separated maxima and some additional structure. At 235

and 123 _w input there are three maxima, whereas at 19.5 _w input there

are again two maxima. Note that the two "low power" maxima appear at

the same probe current as the two minima that occur for input powers of

235 and 123 _w.

When the output power was measured in the decaying plasma, the

results were in some ways different from the results previously described.

At high input power, the results were the same. Two maxima occurred and

separated as the input power increased. At low input power, however, the

number of maxima is dependent on the magnetic field strength, the percent

ionization, and the electron temperature. Figure 7 shows simultaneous

oscilloscope traces of the output power and probe current for magnetic

field strengths of 1900 gauss and 1200 gauss. At 1900 gauss there are

two widely separated maxima, while at 1200 gauss the two maxima have

almost emerged into one. Figure 8 shows output power and probe current

traces with a magnetic field of 1700 gauss. The cesium well pressure in

(b) of Fig. 8 is 0.07 mm Hg and there are two maxima, whereas in (a) the

well pressure is 0.12 mm Hg and there is only one maximum.

In another experiment the magnetic field and cesium vapor pressure

were kept constant, but the electron temperature was varied. The dis-

charge power was decreased, and thus the initial plasma density before
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decay was decreased. The time from initiation of the plasma decay to
the time at which _p = _ is thus reduced. The electron temperature is
correspondingly higher, because the electrons have had less time to lose
their energy. With high energy electrons present in the plasma, a double
peak was observed; with more of the lower energy electrons present, a
single peak was observed.

As the 23 _Mc input power was increased above 1 mw, the ion current
to the probe and the plasma electron current that reached the collector
increased noticeably. Figure 9 showsthe probe current for two input
power levels. The input was modulated at 1 kc.

At input powers below 1 _w and 1 ma beam current, the maximum elec-

tronic gain under single-peak conditions is 40 db and the net gain for

the tube is 8 db. The output power, measured by the crystal detector,

is shown in Fig. 10. The power output fluctuated at approximately the

same frequency as the plasma density, that is, 1Mc. The tube could be

made to oscillate by inserting the feedback loop shown in Fig. 2. Fig-

ure 11 shows the oscillation power in arbitrary units as a function of
frequency. The bandwidth is about 3 Mc.

DISCUSSION

With a low power input, the double-peaked gain curves can be trans-

formed to single-peaked curves by decreasing the magnetic field, increas-

ing the density of neutral cesium, which increases the electron-neutral

collision frequency, or decreasing the electron temperature. These

changes tend to alter the plasma density profile along the radius of
the beam.

The plasma density variation is dependent on the ratio of the axial

diffusion rate to the radial diffusion rate. This ratio is proportional

to the ratio of the ambipolar diffusion constant D a to the magnet diffu-

sion constant DB.

D = (1)
a I_+ + p._

where D and D are the diffusion coefficients of the electrons and ions

respectively, _nd _ and _ are the ion and electron mobilities (9)
÷ --

With the Einstein relationship

D/_ = kT/e (2)

and _+ much less than _ , D a can be expressed as

Da = D+ 1 ÷ = _ v+Z+ 1 + (3)
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where v = ion thermal velocity
_+ = ion meanfree path
T+ = electron temperature
T- = ion temperature
+

With the ion gyro radius less than the cylinder diameter, the mag-

netic diffusion constant is (I0)

2
r

1 c 1 v_ v__
DB= L'C-3 -

c

(4)

where v = electron thermal velocity

r_ = electron cyclotron radius

= electron mean free path

= electron cyclotron frequency

V = electron collision frequency

The ratio

Oa( l%m'
D_B: 1 + _r-- _

c

= I+ T M j2

(5)

where _ = _ =_, and m and M are the masses of the electron and ion

respectmvely.

As Da/D B increases, the plasma density variation along the radius

increases and the plasma becomes partially hollow. A decrease in mag-

netic field tends to reduce the hollowness of the plasma. Calculations

indicate that for the discharge used in these experiments the electron-

ion collision frequency 7i is the same order of magnitude as the

electron-neutral collision frequency Vm. For ion-electron collisions
alone, V2 _ T-3 and

o-'_a= (I + T
D B -+

(6)

Thus a decrease in temperature or an increase in neutral particles will

increase V and decrease Da/DB, thereby reducing the hollowness of the

plasma.

For a high power input the effective electron temperature is in-

creased, as evidenced by the current measurements at the probe and

collector. The increased electron temperature is the result of the
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resonance phenomenonin the plasma. The additional electron energy will

increase Da/D B and thus also result in a partially hollow plasma.

Two of the mechanisms that may be involved in generating the ob-

served multiple peaks due to the partially hollow plasma are under

investigation. (a) The center and edge of the electron beam are in

resonance with the plasma only when _ = _p at the center or edge, and
(b) the power in the space-charge wave on the beam is fed into a back-

ward wave mode that exists in a hollow plasma.

For the first mechanism, consider the following qualitative argu-

ment. A cylindrical electron beam of uniform current density j passes

through a plasma with a radially varying density. The plasma density

can change byAn c over a resonance bandwidth at an applied frequency _.

Since An c depends on the plasma electron collision frequency V, it can

be expressed in the form

r
C2

An c : "_ dA (7)
r
Cl

where rcl and rc2 are the radii where I - 4/_ 2 = Vs/_ 2. The power out-

put P is a function of the beam current that passes through the resonant

section of plasma. In integral form

r
c2

r
el

jdA (8)

Because An c is fixed by V, the integral is maximized by minimizing dn/dA.

For a plasma density function that is uniform at r = 0 and increases at

large r and is of arbitrary form, such as

n = n (I + Kr3 1 (9)
o l+r2/ae/

where K and a are constants, there are two minima for dn/dA, at r = 0

and r = _. Since only the region inside the beam is considered, the

second minimum is at r = b, the beam radius. Hence two power maxima

will occur as the plasma density at the probe is increased from zero.

The twin maxima could also result from absorption of power by the

backward wave mode when conditions in the plasma are such that the elec-

tron beam velocity is in synchronism with the phase velocity of the

backward wave.

It is possible that at low power input the first mechanism is res-

ponsible, and at high power input the backward wave mode is responsible.
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At intermediate power inputs, such as those shown in Fig. 6, both mecha-

nisms may be at work to give three maxima.

CONCLUSIONS

With a low power input, the double-peaked gain curves can be trans-

formed to single-peaked curves by decreasing the magnetic field, increas-

ing the density of neutral cesium, or decreasing the electron temperature.

All these changes tend to change the plasma density contour along the

beam radius from a hollow contour to a flat contour. For a high power

input, where multiple gain peaks are observed, the effective electron

temperature is increased, as evidenced by current measurements at the

probe and collector. The increased temperature decreases the diffusion

across the magnetic field, and the plasma density contour tends to be-

come hollow. The hollow plasma is apparently associated with the

multiple gain peaks. The possible mechanisms involved in generating

the observed multiple peaks are currently under investigation.
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NONPLANAR PHENOMENA IN SINGLE AND MULTIPLE ELECTRON BEAMS

Theodore G. Mihran
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Attention is directed toward_onlinear phenomena that occur in one

or more electron beams of finite radials drifting in a region free--from

external field_iafter-receiving density or velocity moduiat-i-on-at an

input plane.

The one-dimensional single-beam bunching theory of Webster is

reviewed, and its modification in the case of finite diameter beams at

small signal levels as given by Hahn and Ramo is discussed. The need

for a large-signal finite beam theory leads to the disk-electron model

of Tien and co-workers. In calculations made by Webber this model

correctly predicts the phenomenon of harmonic growth, which subsequently

was verified experimentally by Mihran.

Paschke and Olving have recently developed a closed-form analytic

theory for this effect. New computer calculations are reported that

point up a basic disagreement with the Paschke-Olving theory in that

signal level is found to affect profoundly the functional dependence

of harmonic current with distance. Plots of phase shift versus distance

for the fundamental and the first two harmonic currents of a space-charge

wave are shown to give an excellent picture of the loss mechanism that

is inherent at medium signal levels in the propagation of space-charge

waves along finite diameter beams.

The extension by Yu and Mihran of the nonlinear disk-electron analy-

sis to the case of multiple electron streams of finite diameter is

discussed. Two applications of this analysis are given: (a) calculation

of the saturation characteristics of double-stream amplification, in

which the harmonic levels are found to exceed the fundamental level; and

(b) damping of a space-charge wave in multiple (four and eight) stream

flow, which again is found to be accompanied by pronounced harmonic

growth. One possible interpretation of this phenomenon is that it rep_p-_

resents spatial Landau damping.

An electron beam is, by itself, a particularly interesting and use-

ful member of the class of plasmas. I use the word "plasma" here in its

most general sense, for electron beams do not meet the two requirements

most often encountered in the definition of a plasma, which are charge

neutrality and behavior independent of the plasma boundary. Nonetheless,

in electron beam problems we do deal with the dynamic characteristics of

a charged moving gas, and I welcome this opportunity to attempt to cor-

relate the large body of organized and verified knowledge that has

developed within the microwave beam tube art during the past twenty-five

years with related phenomena in the plasma and propagation fields.

157



Q

In particular, some important insights into the nonlinear behavior

of electron beams have been gained recently as a result of the use of a

so-called "disk-electron" calculation scheme. Much of what we shall be

considering in the latter half of this talk stems from the results of

such disk-electron calculations in both single and multiple electron

streams of finite diameter.

In many ways the electron beam as it is utilized in microwave tubes

constitutes a very simple plasma. It is very nearly collisionless, in

regard to both electron-neutral collisions and short-range electron-

electron interactions. It is a single-constituent plasma. Furthermore,

it normally has a very simple velocity distribution, a delta function

at the velocity corresponding to the beam voltage. All of these state-

ments are approximations, but they have proved to be useful in that they

simplify consideration of the dynamic problems of beams without altering

many of the basic wave phenomena of interest to us here.

In the mathematical consideration of electron beams two more assump-

tions are commonly added to this list. One is the assumption of a

stationary positive ion core, and the other is the assumption of one-

dimensional motion. We will retain the first of these, but the second

will be relaxed to some extent and as a result there will emerge a new

class of nonlinear phenomena not present in the one-dimensional case.

The positive ion assumption can be shown not to alter the rf behavior

of the electrons in any way significant to our present interests, because

of the large mass of the ions compared to the electrons.

In Fig. I the specific medium and boundaries of the system with

which we will be concerned are shown. An electron beam is produced by

an electron gun to the left (not shown). The beam passes through an

input plane consisting of a pair of closely spaced parallel planes

across which a sinusoidally varying signal voltage appears. The elec-

trons then pass through a drift tube, which constitutes a region free

from external electric fields. To keep the electrons from spreading

laterally in this region due to their mutual repulsion, a very strong

magnetic field is assumed to exist in the axial direction. Thus, in

truth, the electrons describe tight spiral trajectories as they travel

forward. The frequency of this cyclotron motion will be assumed to be

much higher than the operating frequency. This situation, referred to

as "confined" flow, is one of the two methods most commonly used in

beam-type tubes to counteract the radial repulsion forces of the elec-

trons.

After traversing the drift tube the electrons pass through another

set of grids, and then are collected. That completes the picture as far

as direct current is concerned. It is the waves that can exist in such

a system that interest us, particularly the waves in the drift space.

This setup is essentially that of a two-cavity klystron; the input grids

constitute the capacitance of the first resonator or buncher cavity,

and the second grids constitute the gap of the catcher cavity. It is

important to note that electromagnetic energy flows into the beam at the

buncher and electromagnetic energy is extracted at the output grids, but

that in the drift tube the energy is principally transported electro-

mechanically, not electromagnetically. The drift tube constitutes a
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circular waveguide, which in practice is always arranged to be operated
below its cutoff frequency so that electromagnetic waves cannot propa-
gate through it.

Let us note two other conditions. The cyclotron frequency _c is
muchgreater than the operating frequency _ in idealized confined flow,
and in general the operating frequency _ is muchgreater than the plasma
frequency. Wewill see shortly why the latter inequality holds, even at
extremely low signal frequencies.

The lower portion of Fig. I depicts a typical bunching pattern in
a high_ower klystron. For high efficiency performance the velocity

index -- the ratio of peak a-c bunching velocity vI to d-c beam voltage

u -- is made larger than a_/_. This gives what is called "ballistic
b_nching" because space-charge forces have a negligible effect on the

electron trajectories. In this case some of the electrons actually over-

take one another, as evidenced by the infinite current spike that develops

along the drift tube, and optimum fundamental current occurs when an

interesting double-spiked current waveshape is developed. These current

waveforms are obviously rich in harmonic content, and the behavior shown

here is highly nonlinear. For two reasons, however, we will not further

consider this kind of nonlinear behavior. It is well known and has been

described clearly in the older literature (I), and since it does not

represent the flow of energy back and forth between two types of energy

storage, it is not a wave phenomenon in the strict sense of the word.

When we reduce the signal level considerably below a_/_, space-charge

forces do enter and promote wavelike behavior.

Before going into a detailed discussion of space-charge waves that

result when v /v is small compared to _p/_, let me attempt to put thisl 0
phenomenon in terms more familiar to workers in the propagation and plasma

fields. In Fig. 2 we see that many of the elements of a klystron are

present in the region above the earth. Here again we have trapped charged

particles following B lines. If we visualize an input coupling system by

which electromagnetic energy from the earth is somehow made to modulate

the velocity or density of the charged particles, then in situations where

the signal frequency is higher than the effective plasma frequency, these

particles could conceivably carry energy electromechanically to an output

coupling region, as in a klystron. Whether or not this behavior actually

takes place in the exosphere is a question best left to those of you who

are specialists in such far-out phenomena.

Let us now take a look at what strikes me as an extremely neat method

of classifying plasma behavior. Shown in Fig. 3 is the so-called "plasma

pond," a name given by Stix (2) to a diagram proposed by Allis (3) and

others. I am grateful to Professor Holt and Mr. Haskell of R.P.I. for

calling this type of presentation to my attention. In Fig. 3 the square

of cyclotron frequency over signal frequency is plotted as the ordinate,

and the square of plasma frequency over signal frequency is plotted
horizontally. The cutoffs and resonances characteristic of plasma behav-

ior divide the pond up into several subponds in which the wave behavior
differs rather fundamentally. Two basic boundaries of the subponds are

the lines ec = e and _p = _. Other boundaries are defined by the straight
line joining i-0 and 0-I, as well as a parabola passing through the same
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two points. Finite plasma temperature adds another line at (_c/_) 2 = 1/4.
Ion effects have been neglected in the present problem.

It is interesting to see where space-charge waves on confined-flow

beams fit into the plasma pond of Fig. 3. First of all, we have assumed

a magnetic field strength approaching infinity. The cyclotron frequency,

which is proportional to B, is therefore very large, and we are in one

of the upper three regions, II, 12, or 13. As mentioned before, another

characteristic of space-charge waves is that the signal frequency is

always higher than the effective plasma frequency. This puts us near

the vertical axis in region ii, shown by the shaded area.

The utility of this diagram is greatly enhanced by the sketches of

the wave normal surfaces that appear in each of the thirteen regions.

Dr. Bazer has given us excellent insight into the meaning of such plots

earlier in this conference. Only two of these surfaces are shown here,

but Papa (4) has calculated them for each of the regions, for the case

of a warm electron plasma. The dashed line represents the wave front

of a wave traveling with the velocity of light; this is merely for ref-

erence. The solid surfaces represent the wave fronts of waves that are

characteristic of the entire region. If one dropped a pebble into each

subpond, waves would move outward in these shapes. These diagrams

preserve their topological properties as one moves within the confines

of any given region, although they are distorted elastically as one moves

about, especially approaching the boundaries.

The vertical direction on these diagrams represents propagation in

the direction of the magnetic field, and the horizontal direction is that

perpendicular to B. In region II, the region of immediate concern to us,

we see that three waves are possible. The outer two are electromagnetic

waves; it can be shown that they are present for zero temperature beams

(3). The inner wave appears as a direct result of the electron tempera-

ture. It is the longitudinal plasma electron wave, and it is generically

related to the one we are concerned with in electron beams, for the other

electromagnetic waves are cut off in the drift tube.

Note the striking resemblance between the wave normal surface of

this wave and those of the slower waves to the right of the _p = _ line.
The latter are found even in zero temperature plasmas and are therefore

electromagnetic waves, contrasted to the slow electromechanical wave we

are dealing with. In fact, the slow wave in regions 12 and 13 represents

the "whistler" mode, which has come in for a great deal of attention

during this conference. Thus in regions II, 12, and 13 we can have a

wave whose velocity is directed along the B lines and is slower than the

velocity of light. It may be helpful to remember that the waves we shall

be discussing in the rest of this talk occur when _p << _, and are the

electromechanical counterpart of the familiar "whistler" modes.

So much for orientation. Now let us describe the linear properties

of space-charge waves on electron beams as a preliminary to moving on to

their nonlinear behavior. The simplest way to think of a space-charge

wave is to think of a moving beam of electrons neutralized by a fixed

core of positive ions, such as that shown in the top sketch in Fig. 4.
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Let us somehow reach into the beam and bunch the electrons periodically
with spacing kb, a distance whose significance will become clear shortly.

Longitudinal electric field lines will emerge from each bunch, as shown,

and this will lead with time to an axial spreading out of the bunches.

Sometime later, when the whole beam has moved forward as shown in

the second line of Fig. 4, the bunches will have partially spread out.

The electrons have acquired outward velocities as a result of the action

of the electric fields, and the electric fields are reduced because each

bunch now encompasses more positive ions. Later the bunches will spread

out completely to form a beam of uniform density, as shown in the third

line of Fig. 4. The process does not stop here, however, because the

a-c potential energy of the bunch represented by the E field in the first

sketch has been converted into a-c kinetic energy in the form of periodic

velocity modulation of the electrons, as shown in the third line. These

velocities institute a rebunching process which leads, sometime later,
to a density modulation equal to the initial density modulation but of

the opposite phase.

You may recognize that this series of five sketches depicts a half

period of an electron plasma oscillation in a moving beam; the process

would go on indefinitely if there were no losses. The distance the beam

travels in this period is one-half a plasma wavelength, _u /_p.
O

In a situation as in a klystron where the beam is velocity modulated

at an input plane, as in Fig. I, the behavior is very similar to that

shown in the third line of Fig. 4. The periodic spacing is set by the

signal frequency _ and the forward velocity of the beam, and is simply

27ru /_. As the beam travels subsequently in the drift tube, electron

bunches are formed which increase in density until the space-charge

forces wipe out the velocity modulation, as shown in lines 4 and 5 of

Fig. 4. This is followed by a quarter plasma cycle of debunching, then

rebunching in the opposite phase, and so on. This behavior is sketched

in the lower portion of Fig. 4. Here we have a standing wave whose

period is set by the plasma frequency, with electron bunches rising and

falling as they move through it. This behavior is very closely related

to the behavior shown in the sketch above in Fig. 4, provided the rate

of growth is small; that is, kb << kp, which means _ << I. The case

shown in Fig. 4 is drawn for kb/k p = 1/8.

The sketch at the bottom of Fig. 4 represents the space-charge wave

regime of operation of a klystron. This is how all klystrons would

operate if driven at low signal level. If a sliding cavity were moved

along the beam to sample the rf current developed in the beam, it would

measure a current proportional to the envelope of this curve. Actual

experimental measurements (5) of this phenomenon are shown in Fig. 5.

These were made using an experimental setup in which the drift length

could be varied continuously from i to 21 cm. In Fig. 5 the square of

output current is plotted versus distance for various drive levels. At

the lower drive levels, note that the variation of current with distance

is fairly sinusoidal, as space-charge wave theory predicts. As the drive

level is increased, we continue to get space-charge wave behavior until,

at the largest drive levels, we finally encounter a saturation phenomenon.

This is due to the crossover phenomenon mentioned in connection with
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Fig. I. This phenomenon enters at an output signal level about 3 db

below the ultimate saturation value, which has a theoretical value of

I /I = 1.16.
1 0

Let us return again to the space-charge wave regime of operation

depicted by the lower curves in Fig. 5, for it is the nonlinear aspect

of this current behavior that interests us here. The equations for the

current variation in this case are given at the top of Fig. 6. Since

the current envelope is a standing wave, it can be written in terms of

two waves, one going slightly faster than the d-c velocity and one going

slightly slower. These are sketched in the upper diagram in Fig. 6.

Note that the spacing of the two waves from the d-c velocity is about

equal to md_ times u . (This is correct to the first order, but since
O

some of our later curves will show a slight phase shift, let me point

out here that to second-order, both waves are shifted upward by (_/_)2

in relative velocity because only the first term in the expansion has

been retained in going from the first equation to the second. The lower

sketch in Fig. 6 is a more accurate representation of what the velocities

actually are.)

Let me make another point in passing. Later we will be interested

in double-stream amplification in which two beams mutually interact. It

can be shown that if we arrange to have the slow space-charge wave of

the faster stream travel at the same velocity as the fast space-charge

wave of the slower beam, as shown in Fig. 6, we will achieve very nearly

the optimum condition for double-stream gain. Later we will see the

results of a nonlinear calculation of such double-stream amplification

carried to saturation.

We will now consider the behavior, still linear, of space-charge

waves in single streams but now of finite diameter, and we will contrast

this behavior with that found in beams of infinite radial extent. Space-

charge wave behavior of finite diameter electron beams can be calculated

by two basically different methods. The oldest method treats it as a

linearized boundary-value problem. This was first done by Hahn (6) in

1939, using a linearized analysis based on seven equations: Maxwell's

four equations, the force equation, the equation of continuity, and the

definition of current. An entire book has been devoted to this approach

and its ramifications (7). Hahn gives us only linear behavior, but we

will look into it briefly for it gives us an extremely important concept,

reduction of the effective plasma frequency due to finite beam diameter.

How this reduction in effective plasma frequency comes about is

evident from the sketches in Fig. 7. In an infinite beam the E lines

are purely longitudinal and the beam is fairly "stiff," corresponding

to a natural oscillation frequency at the finite-beam plasma frequency

_p. Consider, however, what happens when a finite diameter core is

removed from that picture and placed in a drift tube, as in the central

sketch in Fig. 7. This situation is no longer describable by a one-

dimensional or planar theory, for the E lines now fringe outside the

beam; some may even terminate on the walls of the drift tube. This leads

to a reduction of the stiffness of the beam, hence to a reduction of the

effective plasma frequency. Plasma oscillations will take place at a

lower frequency in this finite diameter beam than in the infinite beam.
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Hahn's space-charge wave theory enables us to calculate the reduced

plasma frequency, called a_t , and plots of _q/_p have been made by Branch
and Mihran (8) for a variety of beam geometries. These have proved to

be extremely useful in the microwave tube art. For a pencil beam the

ratio _q/_p is shown at the bottom of Fig. 7. The abscissa here is 7b.
Note that yb is proportional to frequency. Another way to look at this

variable is to note that it is V times the ratio of beam diameter to

bunch spacing. It is evident that as beam diameter is reduced below

bunch spacing -- that is, if 7b is less than 3 -- we begin to get a

significant reduction of the plasma frequency.

This phenomenon is responsible for a curious restriction found in

practical microwave tubes. An electron beam can never be modulated with

a signal whose frequency is below the effective plasma frequency of the

beam. If you try to reduce the signal frequency below the plasma fre-

quency, the bunch spacing increases and the finite-beam effect reduces

the effective plasma frequency lower still. Try as you will, you can

never operate a tube so that _q/_ is greater than unity. I wonder if
it is possible that the finite lateral extent of the charged regions

above the earth leads to similar reduction factors at the extremely low

radio frequencies that are involved in some extraterrestrial propagation

phenomena. Again I must leave the answer to that question to specialists

in the propagation field.

Since we are interested primarily in nonlinear effects at this con-

ference, let us move on to a consideration of the harmonics that accompany

a space-charge wave in a finite diameter beam. On this subject linear

theory is silent, of course, so we must go to a completely different type

of analysis. Before we do, one bit of harmonic information can be gleaned

from the one-dimensional plasma oscillation model set up by Webster in

the second part of his classic paper dealing with klystron behavior (9).

Webster's theory predicts that the harmonic currents accompanying

a space-charge wave will nestle within the fundamental current, as shown

at the top of Fig. 8. This seems reasonable, but now let us ask what

happens in a finite diameter beam. We know that the plasma frequency

of the fundamental current is reduced, so the effective wavelength of

the fundamental component of current is increased, as shown in the lower

sketch of Fig. 8. But what do the harmonics do? Do they exhibit an

equal increase of plasma wavelength? This seems unlikely because, if

you recall from Fig. 7, the plasma frequency reduction factor is a func-

tion of frequency. From this we might expect the plasma period of the

harmonics to lie somewhere between the unreduced and reduced plasma

frequencies of the fundamental. For what actually happens, let us look

at the experimental data (I0) in Fig. 9. We see the fundamental dis-

playing fairly conventional behavior with distance, but here is a

surprise: the second harmonic is found to grow with distance!

Can we calculate such behavior? .The answer turns out to be yes.

To do this we need a nonlinear theor_ valid for finite diameter beams.

Of several such theories that exist, one called the disk-electron analy-

sis (11-15) has been used with great success by workers in the microwave

tube field since 1955. This method of analysis is based on the model
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shownin Fig. I0. Here we see a beamof electrons in which a current
wave is growing. If the rate of growth per rf cycle is small, we may
calculate rf behavior by considering just one cycle's worth of electrons,
assuming this to be preceded and followed by identical cycles. This
assumption increases in validity as the ratio _0q/_is made smaller. We
then break the cycle's worth of electrons into N cylinders, and replace
these by N disks. This has been found to be a valid procedure if 7b < I.

The behavior of these disks as a function of distance is then cal-
culated as a function of (a) their initial modulation and (b) the space-
charge forces that they exert upon one another as they travel. External
electric fields may also be taken into account in the drift tube, but
these are zero in our case. The calculation of the actual trajectories

is an arduous but straightforward task and calls for a computer, usually

the biggest and fastest one you can find. In our case we used an IBM

7090. With no modulation, if we plot time versus distance we will have

a series of straight lines for the trajectories of the disks, as shown

at lower left in Fig. I0. It is convenient to subtract out the average

slope of these lines, as shown at lower right in Fig. I0. We then have

just a series of horizontal lines for the case of no modulation.

In Fig. Ii we see what happens when a small initial velocity modu-

lation is imposed on the beam at Y = 0. These trajectories are the

result of a computer run in which N = 16. Distance increases vertically

in this plot; horizontally, we plot the phases of the electrons at vari-

ous distances from the starting plane. We see at the quarter-space

charge point that electrons, on the average, lose their inward velocity

and start debunching. To make the computation more revealing, we ask

the computer to perform a Fourier series at each increment of distance

and to calculate the first three harmonics of current. A typical result

for the fundamental and second harmonic (14) is shown in Fig. 12. Here

we see that the fundamental current is varying nearly sinusoidally, and

that the harmonic current is growing! This gives US great confidence in

our computational model, since the same behavior has been observed experi-

mentally (Fig. 9).

What is the physical reason for this unexpected harmonic growth? I

call it the "staggered turn-around" effect. If we carefully examine the

calculated trajectories in Fig. II, we find that the electrons do not

all reverse their motion at the same distance from the input plane as

they would do in an infinite beam. This is shown in simpler fashion in

Fig. 13; the electrons closest to bunch center encounter strong repulsive

forces characteristic of the full plasma frequency _p, and therefore turn
around sooner than those electrons at the outposts of the bunch, like 6

and -6. These latter electrons meet reduced repulsive forces due to the

fringing of the E lines, hence they turn around later than the inner ones.

This staggering of the turn-around points leads to a beam at the half

plasma wavelength point that has a pronounced second harmonic content

instead of being uniform in charge density. The second harmonic pertur-

bation forms the starting point for the second half-cycle of plasma

oscillation, which in the same fashion contributes still more second

harmonic current. This effect piles up for some distance before other

consideration overcome the tendency to build up second harmonic current.
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FIG. 12. Calculated

harmonic growth us-

ing disk model (from

Ref. 14).
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Figures 14, 15, and 16 show detailed calculated results for the

variation of the fundamental and the first two harmonics with distance

in a typical case. The interesting point to notice is the phase shift

curves, for they give the most revealing clue as to whether the wave is

damping or growing. Figure 14 shows the fundamental current and its

phase. The magnitude is behaving as expected, but the phase shift shows

two characteristics we would not expect on the basis of linear space-

charge wave theory -- which, incidentally, is very much akin to lossless

transmission line theorx (16). The first is the slope: the wave is not

moving along at quite the beam velocity, but is moving ahead of it at a

constant rate. It has been found that this tilt in the phase shift curve

is proportional to (_q/_)2 and is described by the second order correc-

tion for velocity mentioned in connection with Fig. 6. The tilt appears

in all the curves, and we shall speak of it no more. I should also point

out that the middle cycle of phase should be displaced upwards by 7. As

you remember, in a standing wave adjacent nodes are 180 deg out of phase

with each other. This phase shift has been removed in this and the fol-

lowing plots for convenience of discussion.

The really interesting aspect of the phase shift curve is the round-

ing that shows up in the vicinity of the current nulls. Taking our cue

from lossy transmission line theory, this slope indicates that a loss

mechanism is at work which extracts energy from the fundamental component

of current. Where does this energy go? Remembering that a positive slope

of phase shift is energy loss, let us look at the second harmonic in Fig.

15. Ignoring the tilt, we see that the phase shift now has a negative

slope. Obviously, the second harmonic is gaining energy, and it is rea-

sonable to expect that this energy is coming from the fundamental space-

charge wave, which is undergoing a loss. That the second harmonic is

gaining energy is evident in the growth of its magnitude.

The phase of the third harmonic, Fig. 16, displays even more inter-

eating behavior. It starts out with a negative slope, which reverses

itself and becomes positive. This wave evidently receives energy for

a while and then starts giving it up. The magnitude displays this be-

havior, too, but not nearly as cryptically as does the phase data.

With these recently calculated phase curves, I believe that we are

for the first time in a good position to understand the true nature of

the interchange of energy between the fundamental and harmonic space-

charge wave currents propagating in a finite diameter electron beam.

To complete this part of the talk, let me say that upon seeing the

experimental harmonic growth data of Fig. 9, Paschke (17,18) and later

Olving (19) developed a second order theory that predicts this phenomenon

analytically in closed form. Let me show, however, a final set of curves

computed by the disk-electron method, which disagrees with the results

of Paschke and Olving.

The curves in Fig. 17 show calculated fundamental and harmonic cur-

rent at three different signal levels. To obtain these curves the signal

level was halved and then halved again; all other parameters were main-

tained constant. It is evident that the harmonic growth phenomenon
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appears only at the higher signal levels. At the lowest level we have

behavior very similar to that in an infinite beam (Fig. 8). But the

prediction of the Paschke-Olving theory is that the functional depend-

ence of current with distance is independent of signal level. In their

work, signal level appears merely as a scaling factor. Such is defi-

nitely not the case according to our calculations. Here is an interest-

ing discrepancy, which must be looked into further.

As our final topic, let us discuss some facets of space-charge wave

behavior in multiple beams. Here we approach one step closer to the

situation in a plasma, for we now introduce velocity distribution into

the problem. Several years ago I took some interesting data on the

propagation of space-charge waves along the electron beam, which pos-

sessed, among other things, a longitudinal velocity distribution. These

data (20) are shown in Fig. 18. The space-charge wave does not maintain

its magnitude at successive peaks, as we are used to seeing, but rather,

the peaks decrease monotonically. Furthermore, the standing wave nature

of the wave disappears, particularly at small d-c levels.

To try to explain this interesting behavior, we first applied

linearized distribution function theory. This method allows us to take

into account both space-charge and velocity distribution. In the experi-

mental setup there is reason to believe we are getting a fairly straight-

sided, flat-topped d-c velocity distribution function, whose width is

about i0 percent of the forward beam velocity. When linearized distri-

bution function analysis is applied in a typical case with this form of

velocity distribution, we get the variation of current shown in Fig. 19.

We see that distribution function theory predicts the reduction of the

first current maximum in agreement with experiment, but for distances

greater than a half plasma wavelength the agreement is poor.

Because I once suspected that the linearization of the distribution

function theory was the basis of this disagreement, Se Puan Yu of our

laboratory and I set about devising a nonlinear theory that would allow

for a distribution of velocities. Before discussing this theory let me

point out that it is possible, choosing a special type of velocity dis-

tribution function, to make the linearized one-dimensional distribution

function theory give a result that agrees most strikingly with the ex-

perimental result (21).

The special distribution consists of a half Maxwellian approximately

10 percent in width to the I/e point, extending upward from the d-c beam

velocity. This causes the fast space-charge wave to be damped by Landau

damping because it is in the middle of a downward-tilting velocity dis-

tribution. The slow space-charge wave is undamped, since it appears

below the edge of the velocity distribution function. If this inter-

pretation is correct, the experimental data of Fig. 18 may be interpreted

as spatial Landau damping, a phenomenon hitherto unobserved. Much as I

would like to think that it is Landau damping, I personally have a most

difficult time accepting the physical reality of the velocity distri-

bution function that must be postulated for this explanation to be valid.

Since the velocity distribution has not yet been measured experimentally,

we cannot exclude this interpretation. But though I am quite sure that
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velocity distribution effects are the source of the present phenomenon,

I feel that one-dimensional theory cannot describe what to me appears

to require a multidimensional treatment of the velocity distribution.

Let us now consider the nonlinear multiple beam analysis. Since

the disk-electron analysis had proved so successful in predicting the

nonlinear behavior of single electron beams, it seemed reasonable to

try to extend it to the case of multiple beams. The validity of using

discrete beams to simulate a continuous velocity distribution may be

questioned, but the consistent results we have obtained give us consid-

erable confidence in this method.

The theory of the disk-electron calculation for beams with velocity

distribution, as worked out by Se Puan Yu and me (22,23), is summarized

in Fig. 20. The variables are normalized distance y and normalized time

at fixed distance _. The instantaneous velocity is treated in terms of

a normalized deviation from the average velocity u , which is defined
in the usual fashion. As in the single-stream analysis, the method of

Lagrangian hydrodynamics is used in that the force equation is applied

to each disk individually. The key to the modification of the analysis

to allow velocity distribution is the introduction of a third variable

v that designates the initial velocity of each disk. The equation for

t_e approximate force between two disks is an exponential function of

the spacing between two disks, as suggested by Tien and co-workers (ll),

except that it now is extended to allow velocity distribution by intro-
ducing the factor D(Z',VA,t) dv • The continuity equation is used to

refer 0 back to the inpu_ plane Uas usual.

So far we have allowed a continuous velocity distribution, but for

computer use we must replace the continuous distribution function f(v )

with a set of discrete beams, as shown in Fig. 21. In most cases, four

or eight beams were used to simulate a rectangular distribution. When

this is done, the integro-difference equations ready for programming on

the computer take the form shown in Fig. 22. These equations are the

counterparts of the equations in Fig. 20. Equation 2 is the force equa-

tion.

m

I would like to call your attention to the new term Tj, n that ap-

pears here, which I call the force-taper term. It is unity for most

force calculations, but when two disks approach so close to one another

that there is an overlap of the charge cylinders they represent, the

term scales the force linearly to zero proportional to the degree of

overlap. It can be shown (23) that this is a much closer approximation

to the true force than simply letting the force reverse instantaneously

as two disks pass through one another as is done by Tien and co-workers.

The presence of this force-taper term has a calming effect on the tra-

jectories, as we shall see.

The computer is asked to calculate the Fourier coefficients (Fig.

22), both magnitude and phase, at each y position. The "fallout" and

"surrounding cycles" corrections are essential, since we focus our

attention on only one cycle's worth of electrons. We allow the initial

conditions to consist of either velocity modulation or density modula-

tion, or both.
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FIG. 20. Basic equations for

mul±iple d-c velocity disk-

electron calculation.
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To make the meaning of the calculated results clearer, let us look

at the curves in Fig. 23. Here a velocity distribution has been simu-

lated by four velocity classes. With no modulation we would expect four

overlapping sets of trajectories, as shown to the left in Fig. 23. There

are 16 particles in each of the four velocity classes, for a total of 64

particles. With I0 percent density modulation imposed on all velocity

classes, we get the trajectories shown in Fig. 24. These have been sepa-

rated here for convenience; in the actual calculation they are super-

imposed.

Before we look at the details of the trajectories and the results

of their Fourier analysis, let me give you a glimpse of the effect the

force-taper factor has. Notice the fairly laminar nature of the elec-

trons in the second velocity class in Fig. 24. In Fig. 25 this class

is shown for the same case but with the force-taper factor removed. It

is evident that the force-taper factor adds considerable stability to

the calculation.

Let us now look at the current behavior that our nonlinear analysis

predicts for space-charge wave propagation in a beam with a rectangular

velocity distribution. In Fig. 26 the results of a 128-particle calcu-

lation are plotted, starting with I0 percent density modulation. Only

four of the eight trajectory classes are shown. The fundamental current

is given in Fig. 27.

Does it look familiar? It should, for it is almost identical with

the result obtained from linear distribution function analysis, as is

evident from the direct comparison in Fig. 28. Obviously, nonlinear

terms do not affect the small-signal behavior of beams with a spread of

d-c velocities. _"nis restores our confidence in linearized analysis,

and suggests that we must look elsewhere for the reason for the disagree-

ment in Fig. 19. We may also consider the agreement in Fig. 28 as a

check on the correctness of our newly developed multivelocity program.

Let us now return to Fig. 27 and look at the new information we have

obtained. Notice the behavior of the magnitude of the third harmonic.

It reaches a value higher than the initial value of the fundamental! I

think it is significant to note that this takes place at about the same

distance that we first observe crossover within a velocity class, about

two space-charge wavelengths down the beam. This crossover behavior is

quite unexpected, especially in a beam of such low initial modulation.

One might be suspicious that this growth is artificial and merely

depends upon the number of particles used. We could check this by in-

creasing the number of particles per velocity class from 16 to 32.

Unfortunately, this is too expensive, but let us look at the results

for current when the number of particles per cycle is reduced from 16 to

8, as shown in Fig. 29. Qualitatively, we have substantially the same

behavior as we had before, although things are a little lumpier, as we

might expect. The qualitative agreement between the currents in Figs.

29 and 27 suggests that the harmonic growth is a real phenomenon and

would persist regardless of the number of disks used. The plots in Fig.

30 show what happens when we return to N = 16 but use only four velocity
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classes. Again the crossover phenomenon is present (see Fig. 24), this

time accompanied by a large second harmonic as well as third.

As a practical application of our nonlinear analysis, I thought it

would be interesting to calculate the simplest multiple beam case, double-

stream amplification (24,25). To my knowledge, only linear analyses

exist for this phenomenon, and these are unable to predict the saturation

of the phenomenon. Our analysis can do this, so let us look at results

for the case of two beams, the fast wave of one coinciding with the slow

wave of the other as in Fig. 6. With a I percent density modulation on

both beams, the calculated result is shown in Fig. 31. The fundamental

current shows a gain with distance of more than 20 db before it levels

off at about 0.15 of the direct current. Note that the harmonics come

up fast and actually overtake the fundamental at the leveling-off point.

It is undoubtedly significant that this high harmonic content occurs

at the same distance at which crossover first takes place within each

beam, as shown by the arrows in Fig. 31. We are surprised to find satu-

ration and crossover taking place at such a low signal level. This seems

to be characteristic of the behavior of finite diameter multiple-velocity

beams, and is probably a result of the counterpart of harmonic growth in

single-velocity finite diameter beams, which we talked about earlier.

That about completes the story. Let me summarize what we have

learned.

(I) We discussed the physical picture of linear space-charge waves

in both infinite and finite diameter electron beams; this led to the

important concept of the plasma frequency reduction factor.

(2) We saw how a harmonic growth mechanism exists for space-charge

waves in finite diameter beams. This behavior is neatly charted by the

phase shift characteristics of the waves as calculated by a disk-electron

analysis.

(3) Finally, we discussed the extension of the nonlinear disk-elec-

tron analysis to the case of multiple electron beams, where we found the

interesting phenomenon of harmonic growth, associated with crossover

within a velocity class. Both of these effects are outside the regime

of linear one-dimensional theory.
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MULTIDIMENSIONAL NONLINEAR THEORY OF MICROWAVE INTERACTION

J. E. Rowe

Department of Electrical Engineering

The University of Michigan, Ann Arbor, Michigan

 65- 100.74
The subject of nonlinear interactions between accelerated st_e_£si_---_

(ions and/or electrons) and electromagnetic waves is discussed in the

framework of a Lagran_ian analysis. One-, two-, and three-dimensional

analyses are developed, including arbitrary magnetic fields as specified

by C0c/C0. The cold plasma approximation is generally used but can easily

be removed. Digital computer solutions of the nonlinear equations yield

information on the growth rate and phase of the electromagnetic wave, in

addition to velocity, phase, and harmonic current values for the stream

charges as functions of distance and rf signal amplitude. Finally it
is shown that the nonlinear equations can be solved in closed form in

the framework of a hard-kernel bunch description of the stream charge.

INTRODUCTI ON J

In recent years the subject of nonlinear beam-plasma phenomena has

become of great interest in radio astronomy, ionospheric propagation,
and short wavelength coherent power generation. To understand and

exploit the essential features of beam-wave interactions in anisotropic
media, a general nonlinear analysis is required in order to calculate

energy transfer between system constituents. The many linear (small
amplitude) analyses that have been made give detailed information on

the wave propagation constants (eigenvalues), but do not shed any light
on the energy exchange characteristics.

Some nonlinear analyses of wave propagation in plasmas havebeen

made using a one-dimensional model and neglecting the effect of electron

crossovers. Neglecting the crossing of particle trajectories permits

the use of fluid flow equations (Eulerian analysis) and thereby con-

siderably simplifies the problem. It is the purpose of this paper to

outline the use of a Lagrangian method of analysis for the study of

nonlinear wave propagation in plasmas and electron beams. This method

has proved quite valuable in the study of microwave electron-beam tubes

on the basis of a one-dimensional model.

The Lagrangian method allows for trajectory crossovers, and multi-

dimensional effects are easily included. The basis of the formulation

is the integration of the equations of motion along a dynamical trajec-

tory, summing all forces acting on representative charge groups injected

at some initial plane. The method is outlined here for both one- and

two-dimensional systems. In general, solutions are obtained by digital

computer methods, although under certain specialized conditions the

nonlinear equations may be solved in closed form. The assumption of a

cold plasma is made for simplicity, but this is not necessary.
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The Lagrangian formulation can and has been applied to the following
nonlinear wave interaction systems:

Electron beam, electromagnetic wave

Klystron

Traveling-wave amplifier

Backward-wave oscillator

Crossed-field amplifier
Crossed-field backward-wave oscillator

Double-beam interaction with either cavity coupling or

distributed wave interaction circuits

Electron beam-plasma interaction with either cavity coupling

or distributed wave interaction circuits

The wave propagation is described using equivalent circuit methods,

and interparticle forces are calculated with the aid of Green's-function

techniques. All of these nonlinear systems are solved as initial-value

problems. It is possible, however, with the penalty of greater computa-

tion expense, to solve them as boundary-value problems. The development

of the one-dimensional Lagrangian analysis and its application has been

given in detail in several articles (1,2,3,4); hence the details are

omitted here.

LAGRANGIAN ANALYSIS

To simplify the development, only one system of nonlinear equations

is given. An axially symmetric coordinate system is assumed, and an

electromagnetic wave is considered to propagate in the axial direction

along either a radio frequency circuit or a plasma column. The wave is

coupled to an electron beam that drifts along the axis of the system.

This beam-wave configuration is illustrated in Fig. I.

The variation of rf voltage along the equivalent transmission line

is given by

_28 v(z,t) 2 v(z,t) 8v(z,t)- v + 2aCd
_t 2 o _z2 _t

= + v Z (320" +2(lf_d'_)---- o o _t 2
(1)

where _ = linear charge density coupled to circuit

Vo,Z ° = characteristic velocity and impedance of transmission line

C = (Zolo/4Vo)z/_

The upper of the two signs on the right-hand side of Eq. I is used for

forward-wave interaction and the lower for backward-wave interaction_
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For a cylindrical coordinate system in which the electron or ion
stream does not fill the circuit, the radial wave equation governs propa-
gation in the intermediate region. Thus

Vs V(r,z) I _2V(r,z) = 0 (2)
2

c 8t2

It is convenient to introduce a normalized potential function of

the following form into Eq. 2:

A FZolo • JexlV(y,x,_,ey) = Rem-_ A(y ) _(x) e-3¢ e (3)

where y = C_/u , axial distance
o

x = C0r/u radial distance
O'

Xo = CC_ro/Uo, normalized initial radius

=_t
o o

_(Z,ro,t ) = (com/Uo) - cot - ey

The radial propagation equation may now be written in two parts:

dmA A_ dy - x dx- +A _ZT-xJ A_+-- +A_ = 0dy 2 dx2
(4)

and

d_e de d2e de

+ A_ y + 2A d_/ x x _ x
dy_ dx d---_+ A_--+dx_ x dx - 0

(5)

The radial coupling function is shown in Fig. 2.

The forcing function on the right of Eq. 1 is calculated from the

conservation of charge, pr drdz = Poro drodzo, and is written as

b !

cr= 27[ / Poro

0

(6)

where Po = Io/_b'mUo"

2I
o

2

x b ,u o

O- --

1

/
0

In normalized coordinates Eq. 6 becomes

_o Xo--_ l+2Cu dXo
Y

(7)
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After introduction of Lagrangian variables and considerable simplifica-

tion, Eq. i may also be written in two parts:

Xb ' 27F

o o o

b l+2CUy(y x' *' _o )?yC X _ _ ' O' O'

0 0

27T

f,(x) sin®, x° dx° d®o_+=<, S _t}
0

(8)

and

rd2_

dy
C dy \ dy - l)

Xb ' 27[

0 0

_(x) sin @' x' dx' d@'
o o o

G 0 _ 0 )l+2Cuy(y,x_, ' _'

217-

- 2Cd f

0

,(x)cos®,x°dx°d®o]
-_:T-7._-_',_ j }

I+2CUy(y,_ o, o,mo)

(9)

where dz/dt _ Uo[l+2Cuy(Y,@o,Xo,_o)], axial velocity

dr/dt _ 2CUoUx(Y,@o,Xo,_o), radial velocity

d_/dt A= Uo[(2C/r) u (y,@o,Xo,_o)], angular velocity

In a cylindrical coordinate system the components of the vector

Lorentz equation are conveniently written as

(eO ( )r = I_llE _ ..._.eo
dt 2 sc-r _r + B rz dt

(i0)
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_V

I d 2 d_fl__I_1 (Esc_ _ I c B dr)rd--_r dr- ra_ _.
(11)

and

_Vc_- E -
dt 2 sc-z

(12)

where Esc_z, Esc_r, Esc__ are the components of the space-charge fields

(coulomb interaction fields between particles), conveniently calculated

using Green's function techniques for the geometry involved.

These equations are quite general, accounting for particle motion

about the axis of symmetry. The magnetic field is assumed to be wholly

axially directed. The general three-dimensional space-charge potential

is given by

(_)///Uo2 CI x' d_o dXo d¢oZoo _ (2-5) e: -V_slY-Y'I
V = ,2 b ,2
sc 2_ a uo _=I s=0

• cos s(_ - ¢')
Js(V_sx') Js(V_sx)

v_s[Js+_(vZsXa,)]2

(13)

where a' = circuit radius

b' = stream radius

= angular position coordinate

After introduction of the previously defined normalized variables

and some simplification, the force equations for three-dimensional flow

take the form of Eqs. 14, 15, and 16. The magnetic field terms appear

as the normalized cyclotron frequency, _c/_. The weighting functions,
which indicate the effect of interparticle coulomb forces, are shown in

Figs. 3 through 6 for an axially symmetric stream that has been divided

into six annular rings of charge.
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dOy(y)-_
= - [1 - C dy j A(y)_(x) sin (_ - (gx")

+C_
dA(y)

dy ,(x) cos (¢- ax)

x b ,
27r

(-_) 2 1 f {f Y'
+ x' dx' sgn (y-) d_'

2x 2 o o o
a T

0 0

_o -vgly-y'[ Jo(V2X)Jo(V_X')

Z e
[J (vzx a,)]e

_=1

and

bUx(Y'X°'_°'¢°)by [I + 2Cuy(y,Xo,_o,¢o)_

dO

= A(y)C d_(x) cos (¢ + A(y)C,(x) x
dx "_ 0x) -_x' sin (_) - 0x)

+ u¢ +

CO

• _, e -Vgly-y

_=1

x b , 277-

1 fOa' {5 x' dx' d_5'
2x e o o o

0

(14)

(15)

and

_u_(Y' x°' 0°'¢°) (_)by II+ 2Cu .( _o,¢o)_ -y Y'Xo' = u x
(16)

Since the normalized radial and angular position variables have

been considered as dependent variables, the following additional equations

are required to complete the system.
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dO _(y,_ ,x ,¢ )

.__.Z+ o o o
dy _3y

x(y,Xo,Cb ,¢o) = xo o

2Uy(y, G ° , x ° , ¢o )

- l+2Cu .(y,_o,Xo¢o)
Y

Y

j G ° _o ) dy

Ux(Y, x o , ,

+ 2C l+2Cu .tY,Xo,_o,¢o___
Y

0

(17)

(18)

Y

¢(y,x _o'¢o ) = ¢o + 2Cf u¢ dyo' x l+2Cuy(y,Xo,¢o,¢ o)

0

(19)

This system of equations describes a nonlinear traveling-wave interaction

between a stream and an arbitrary type of wave propagating medium. Either

forward-wave interaction (wave phase and group velocity in the same di-

rection) or backward-wave interaction (oppositely directed phase and group

velocities) may be investigated. Both problems are solved as initial-

value problems in which the system parameters are selected and the

dependent variables and their derivatives are given at the input plane,

z = 0. The details of parameter selection and variable specification

are not given here for reasons of brevity. (See Refs. I, 3, and 4 for

these details and for a discussion of the method of solution on a high-

speed digital computer.)

The system may be simplified to a one-dimensional system for many

problems, providing that the transverse dimensions of the beam and the

plasma are not large. Beam-plasma equations have been derived on this

basis, including the interaction with a propagating electromagnetic

wave.

THEORETICAL RESULTS

The result.s from digital solution of the system described and other

systems of nonlinear interaction equations may generally be considered

in two categories, namely, those associated with the wave (amplitude

and phase) and those associated with the stream (velocity, phase posi-

tion, and rf harmonic current amplitudes). A typical set of resu]ts

for a three-dimensional space-charge flow in an axially symmetric propa-

gating circuit is shown in Fig. 7, where the gain of the rf wave is

shown versus distance as a function of the strength of the beam confine-

ment field as measured by CUc/m. These particular results have assumed

very weak interparticle coulomb fields. The gain is also compared with

the one-dimensional nonlinear results.

An interesting aspect of the charge flow is depicted in the dynami-

cal trajectory plots for the injected charge groups shown in Fig. 8.

Recall that axial symmetry persists, and hence each trajectory identifies

a figure of revolution. Since in the case shown there is no confining

Lorentz force, in the region of large amplitude rf fields the charges

move radially to the circuit and eventually are intercepted there.
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It is then necessary, of course, to modify the beam equations to account

for a reduction in current.

The rf velocity versus phase relation for the stream charges indi-

cates the strength of modulation and bunching in the beam, from which

information on the amount of kinetic energy converted to rf can be ob-

tained. A typical set of plots of the velocity functions defined follow-

ing Eq. 9 is shown in Figs. 9, I0, and ii for _c/_ = 0.8, which amounts

to essentially confined flow. Notice that at a position of large rf

signal strength along the structure, a vortex develops in the dz/dt

versus _ curve at a phase position of 1.5 to 2 radians (maximum decelera-

ting rf field). A value of 1 + 2CUy greater than 1 indicates that those

charge groups have taken energy from the wave and have been accelerated.

But if 1 + 2Cuy is less than I, the charge group has given up energy to

the wave and is decelerated. As expected, those charges in the strong

decelerating field region are affected most by the wave and hence achieve

the largest radial and angular velocities as measured by u x and u_.

For all of these calculations the "cold plasma" approximation was

used; that is, all charge-group velocities were assumed to be initially

equal. It is relatively easy to remove this assumption by giving the

injected charges and the plasma a distribution of velocities, following

a Maxwell-Boltzmann distribution, for example, by specifying the velocity

functioDs Uy, Ux, and u_ at y = 0.

ANALYTIC SOLUTION OF NONLINEAR EQUATIONS

The solutions of the nonlinear interaction equations presented in

the previous section were all obtained by digital computer methods. To

obtain a complete understanding of the energy conversion process, one

must accumulate a vast number of solutions and carefully analyze the

data. This procedure is both costly and time-consuming and is therefore

usually not completed. The question naturally arises as to whether the

nonlinear equations can be solved in closed form. The answer is for-

tunately affirmative, providing that certain assumptions are made

concerning the rf bunching in the stream.

At a position along the structure corresponding to a signal level

of 6 to I0 db below the saturation level, the stream is well bunched

and the predominance of charge is located in the decelerating phase of

the rf wave, as illustrated in Fig. 12. The beam is treated as a single

"hard-kernel"bunch. As the rf wave continues to grow, this bunch gives

up kinetic energy and drops back in phase, thereby delivering less

energy to the wave. To maximize the energy conversion process, it is

desired to maintain @f invariant with distance. The one-dimensional

nonlinear equations (5) describing the dynamics of this hard-kernel

bunch have been derived as

27

sin @f
dA(y) _ 7"0-" l d_'. = sin _f (20)
dy 03

201



R-F ELECTRIC

FIELD
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27

cos _f _dS__ + b - _ -- do . _

dy 2vA(y)J oJ

0

du(y,_)

dy - A(y) sin _f

cos _f

A(y)
(21)

(22)

and

= 2u(y,_f) (23)dy

In order to maintain the phase position of the bunch _f invariant, the

phase velocity of the propagating circuit must be varied in a prescribed

manner. The necessary variation is given by

Vo(y)

V
0

__ 1 - C(y e + 2AoY ) (24)

More exact closed-form solutions have been obtained, and are shown

in Fig. 13. Experimental data indicate that through such a phase-focusing

process the efficiency of energy conversion in a traveling-wave amplifier

(kinetic energy conversion) has been increased from 30 percent to approx-

imately 50 percent.

Using the hard-kernel bunch model similar calculations have been

made for other interaction configurations, and it has been found that

both potential and kinetic energy conversion systems may be analyzed in

this manner. These closed-form analysis techniques have not yet been

applied to beam-plasma interactions, but there seem to be no restrictions

on their range of application. It should be possible to extend them to

the study of many other nonlinear interaction phenomena.

CONCLUSIONS

A general method known as a Lagrangian analysis has been developed

to study nonlinear beam-wave-plasma interactions. The method is readily
adaptable to one-, two-, and three-dimensional systems and various rf

and static field configurations. The equations for a three-dimensional

space-charge flow in a traveling-wave interaction system were presented,

and various typical solutions were given that indicate both beam and
wave characteristics.

If the hard-kernel bunch model of the stream is used, the nonlinear

equations for most types of interaction can be solved in closed form.

This method has the advantage of simplicity and elegance, and its results

yield detailed information on the energy conversion process.
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This paper deals with the nonlinear theory of a plane TWT model.

An infinitely wide electron beam interacts with an infinitely wide ho-

mogeneous slow wave structure whereby the difficulties associated with

radial boundary conditions are avoided. The nonlinear wave equation is

solved to the third order accuracy by the use of the method of successive

approximations. The one-valued velocity assumption limits the analysis

to the range well below the saturation level. Within this range, however,

the results describe such effects as the dependence of fundamental fre-

quency gain and output phase on drive power, and the production of the

first two harmonics. Furthermore, it is shown that by the use of suit-

able approximations one can write the nonlinear plane TWT equation in a

form very similar to the exact nonlinear plane klystron equation. From

this point on, one can deal with the plane TWT by the methods that have

already been successfully applied in the plane klystron case.

1. DESCRIPTION OF THE PI_ANE 2"vVT MODEL

The principles of space-charge wave devices, such as klystrons,

double-stream amplifiers, velocity step amplifiers, resistive medium

amplifiers, and microwave vacuum diodes, are most conveniently analyzed

using plane models with infinitely wide beams. Such models lend them-

selves to comparatively convenient studies of the basic effects in the

various devices. The price one has to pay is neglect of the important

phenomena produced by the fringe fields in real tubes. Nevertheless,

since the traveling-wave tube (TWT) is an extremely difficult object

to study, especially in the nonlinear region, it should be of some

interest to develop a nonlinear theory for the plane TWT model.

The linearized analysis of the plane TWT has been published else-

where (I). The plane TWT consists of an infinitely wide confined elec-

tron beam moving with a constant d-c velocity v o in an anisotropically

conducting homogeneous medium (Fig. i). The medium represents the slow

wave structure. It has to be anisotropic, since an isotropic homogene-

ous medium would support plane TEM waves. The TWT mechanism depends,

however, on the presence of an electric field component in the direction

of the electron and wave motion, and thus requires a TM wave.

A simple TM slow wave medium can be thought of as consisting of

closely placed straight parallel wires filling the whole three-dimen-

sional space. The wires are parallel to the y-z plane, and they make

an angle _ with the x-y plane. The angle _ corresponds directly to the
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FIG. I. Infinitely wide electron beam moving in the infinitely

wide wire structure.

pitch angle of a helical slow wave structure. Mathematically we will take

the presence of the wires into account by letting the conductivity of the

whole space be infinity in the wire direction and zero in all other direc-

tions. The wire medium is supposed, of course, to be transparent with

respect to the beam electrons, which move along the positive z direction.

The beam is confined by a very strong d-c magnetic field.

In the absence of the electron beam the medium supports a plane TM

wave with field components Ey, Ez, and H x propagating in the positive

(or negativ_ z direction with a phase velocity Vph = c sin _ (c = velocity
of light). The constant phase and amplitude planes are assumed to be

perpendicular to the z axis, that is, _/_x = 0 = 8/_y. In the presence

of the beam, interaction will take place, and the four characteristic

TWT waves are easily found from Maxwell's equations.

2. THE NONLINEAR WAVE EQUATION

Let us define a quantity zl(z,t), the displacement of an electron
from the position zo it would have if a-c forces were not applied. If

z is the actual position of the electron, one has the relation z = zo + z1
Similarly we denote the electron velocity by v = v_ + v , the convection

u 1

current density by i = io + iI , and the electronic charge density by

D = Po + _" The quantities indexed by o refer to undisturbed conditions;

the quantities indexed by I denote the change produced by the signal.

From the relations

dz
l

V

1 dt
(i)

iI = PoVl + VoP l + vlP l
(2)
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and

- _t (3)

one easily obtains (2) the expressions

bz
1

i_ : Po _ (4)

bz
1

P_ = - Po _ (5)

The nonrelativistic equation of motion is

de z
1 e

- E
dt 2 m z

(6)

Relations 4 and 6 will now be used in Maxwell's equations in order

to obtain a nonlinear wave equation for z . Maxwell's equations yield
for the TM case with b/bx = 0 = b/by: 1

bE bH
__/ x
bz = _o_--

bH bE

y o

bE
z

O=I +¢ _--z o

where _o and c o are the permeability and permittivity, respectively, of

free space. Iy and I z are the current density components:

I = I cos
Y

I = I sin _ + i
z l

(8)

where I is the conduction current density along the direction of infinite

conductivity. Since the electric field must be perpendicular to the direc-
tion of infinite conductivity, we also have the relation

E cos _ + E sin _ = 0 (9)y z

By the use of Eqs. 4, 6, 8, and 9 in Eq. 7, one easily deduces the

desired wave equation.
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_e d2zz

_z 2 dte

_o_ _ z
1 _e d2zl --2__ cos e _ i _ 0

2v _t 2 dt e v _t e
ph ph

(I0)

where

l

Vph = (_ogo)-_
sin _ = c sin

is the phase velocity of the TM wave in the absence of the electron beam

and

1

top = (- mE o]

is the angular plasma frequency.

Equation i0 is the exact wave equation in the system under consid-

eration. It is nonlinear on account of the quantity d2zz/dt 2, as we will

see in what follows. It should be pointed out that Eq. I0 is valid only

in regions where overtaking does not occur, since it has been assumed

that the total convection current density in a plane z is given by Eq. 4.

If overtaking occurs, then zz is no longer a one-valued function of z and

Eq. 4 does not give the total convection current density, which we need

in Maxwell's first equation.

With d/dt = _/_t + (vo + vl)_/_z we obtain, after some elementary

calculations, the following nonlinear exact expression for dezl/dt2:

d2z z (_/_z)(_l)e " z /_z e)

dt e - (l-_z /_z) + +1 (1-_z /_z) _ (1-_z /_z) 3
1 1

(11)

whe re

zo( +v z)Zo 1

and

"zz - --+ 2v +v z
_t _ o _ o l

Thus the dot denotes the linearized time derivative. Note, however,

that Eq. II is an exact expression for the electron acceleration. In

the case of the linearized theory (see Section 3) one would approximate

Eq. ii by the expression d2z /dt_ _ _ .
1 l
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The excess velocity vI is related to zI by the exact expression

dz z
1 1

V _ ° i

z dt (l-Sz /Sz)
1

(12)

Upon the insertion of Eq. II into Eq. I0 one would obtain the com-

plete nonlinear partial differential equation for zI . Obviously this

equation, in spite of the simplicity of the plane TWT model, is an ex-

tremely complicated one. There is no hope to find a proper exact solution.

Nevertheless, it is interesting to note that the function ej[cot-Tz°),''

where _ and 7 are constants (7 is the same as in Eq. 16), is an exact

solution to Eq. i0. This solution is physically meaningless, since its

real and imaginary parts taken separately are not exact solutions to Eq.

10. But we will show in Section 6 that certain properties of the plane

TWT can be studied by the use of this solution.

3. THE LINEARIZED SOLUTION

If we linearize our wave equation (Eq. i0), the result is

Da = 0 (13)
l

where D denotes the operator

D= +2v

2 V2 0

ph

_t--_--_z+ veo

_2
_ -2- cos _ _

2

Vph _t_

(14)

and al is the linearized electron displacement zz . An amplifying solu-

tion to Eq. 13 is

a = Ae az cos (0_t - _z) = ARe [ej(tot-Tz)] (15)
l

where _ = Re 7 and _ = Im 7 (_ is supposed to be positive).

propagation constant 7 obeys the dispersion equation

The complex

(7_ - 7t)( 7 - _e )2 + _Tt cos 2 _ : 0
(16)

which is obtained by inserting Eq. 15 into Eq. 13. The notations are

70 = o_/Vph

_e = °'V'Vo

_p = _/vp o

propagation constant in absence of beam

mathematical beam propagation constant

plasma propagation constant
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Equation 16 determines the real quantities _ and _. For the ampli-

fying wave, _ is positive. We are interested in cases where v o is very

close to v . and where e
pn _P << (02. Under these usual conditions 7 will be

very close to _e and 7o. Hence Eq. 16 can be approximated by

I 2 2

(7- _e)e(7 - 7o) +_ _p_e cos _ _ 0 (17)

Using the same assumptions in Pierce's (3) Eq. 7.10, we would get

7-7o_

(7- #e)e(7- 70 ) + (#eC) 3 (1 - 4Q _e ] _ 0
(18)

where C and Q are the well-known parameters defined by Pierce.

We observe that Eqs. 17 and 18 are equivalent if

c _ = ! __ cos e (19)

and if QC is a small number (4QC << 1). The latter requirement shows

that the plane TWT bears a close resemblance to the small-Q helical TWT

[strong coupling between beam and helix, beam radius equal to helix ra-

dius (4,5)].

Returning to Eq. 17, we introduce the notations originally used by

Pierce:

7 = _e + _e C(jx - y)

70 = _e + _e Cb

and rewrite Eq. 17 in the form

(jx- y)e(jx- y- b) + I = 0 (20)

_f Ibl<< Ijx- yl(that is, operating polnt near velocity synchro-

nism, the region of maximum amplification), we have the approximate

solution

x

1 1
b

Y_ 2 3

(21)

The parameter x is associated with the exponential growth of the

wave (positive x corresponds to amplification), whereas y is related to

the propagation constant of the wave (Fig. 2).
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In this connection it is interesting to compare the exponential

linearized amplification of the principal continuous-interaction-type

amplifiers. The electronic amplification is given by the factor

21m(7)z
_c_ e (assuming, ase In Fig. 3 Im(7)/_e is depicted versus

usual, that cos 2 { _ I) for the following amplifiers, all adjusted for

maximum amplification: A, plane TWT (la); B, sheath helix TWT, the

radius of the solid electron beam equaling that of the helix (ib,4,5,);

C, plane resistive medium tube _6) and plane double-stream tube (3). In

the plane double-stream tube, _p = 2_ where _ is the angular plasma

frequency of one beam alone.

4. THE NONLINEAR SOLUTION, METHOD OF SUCCESSIVE APPROXIMATIONS

It is well known that a set of three linear forward waves will be

excited at the input of a TWT. One of these will be an amplifying wave.

This is the wave described by Eq. 15. When the waves have traveled far

enough, the amplifying wave will dominate the other two. Hence, at the

distance where the propagation becomes nonlinear we need to consider

only the amplifying wave and the nonlinear effects associated with this

particular wave.

We want to make use of the method of successive approximations (7)

to find a third order solution to Eq. i0. This means that we think of

the solution in terms of a power series in Ae _z, the amplitude of the

linearized displacement (see Eq. 15), and we want to find the first three

terms in the series. The third term, which contains a nonlinear wave of

the fundamental frequency, allows us to study the low-level nonlinear

effects at the frequency _, and also describes the excitation of the third

harmonic 3_. The second harmonic 2_ and a d-c correction constitute the

second term in the power series.

The total electronic charge density can never be positive; therefore

Po + 01 _ 0. By the use of Eq. 4 one easily concludes now that _z /_z < I.

Assuming l_zl/_z I < i, we expand Eq. II as follows: !

2

dt 2

a,1 ;(;L)+ I+2 -7 a- (;L
_z 2

(22)

Relation 22 includes the nonlinear terms to the third order. Expanding

Eq. 12 in the same manner yields

Vl - dt _ _-z + (23)

We will now assume that z
1

z =a +a +a
1 i 2 3

can be written in the form

(24)
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where a _ Ae caz, a _ (AeCLZ) 2 and a cc (AeCCZ) 3 are the three first terms

of the Bower . 2series. The llnear te_m a ls already expressed in Eq. 15.

By the use of Eqs. 24 and 22 in Eq. I0 lone obtains, upon equating terms

of equal powers in Ae c_z, the following three equations:

Da = 0
1

(25)

ph

(26)

(
Da = - v 2_z_ _ _j)L'S-i-z _ *'S'7-z 1

ph

_al_ 2

_a _2 a

+ 2 _z _z (al +-- (al)2 J
_z 2

(27)

The solution to Eq. 25 is known. Thus Eq. 26 is a linear nonhomoge-

neous wave equation. Its particular integral a2 can be found by standard

methods. Once a and a are known, one can attack Eq. 27 and find its
l 2

particular integral a The results, written in complex notations, are
3

_ea! = (A_eeC_Z)e j(_t-_z)
(28)

Pea2 = (A_eeC_Z)2{_ j[l + C(-y + jx)]e 2j(_t-_z)

[4_x 3C (x2 + y2)]} (29)+ 8x

F 3 3j(_t-_z)

pe a _ (APeeC_Z)sL- _ e

_ (y+b-3jx)(x2+y2-2j xy_ eJ(_t-_z)]

i- (y+b-3j x) (y-3jx) 2

(30)

Equations 28 and 29 are exact solutions to Eqs. 25 and 26 respec-

tively, whereas Eq. 30 is deduced with the same approximations as Eq.

17.
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Rememberingthat Ez -
d2z

m 1

e dt s

we can write E
Z

= E +E +E where
Zl Z2 Z_

E

zl : (A@eeCUZ)eJ (d>t- _z)
2 . o

2t-% V C (-y+3x) _
e o

(31)

E
Z2

2f _ V C2(-y+jx) 2
'e o

CLZ2 1
= (A@ee ) _ j[l + C(-y + jx)]e 2j(c°t-@z)

E I 3 3j (_t- _z)z3 _ (A_eeC_Z)3 - -_ e

2 @eVo C2 (-y+j x) 2

_ (xa+yS- 2jxy) .....e j (CSt- @z) ]

(-y+jx) 2 l-(y+b-3j x) (y-3J x) 2

2
mv

0

in which'V (= _--e ) denotes the beam voltage.
0

We also express the velocity v
1

+ v , where
13

(32)

v (_t-_z)
zl 1 eC_Z

v C(-y+jx) - -J(A@e )eJ
0

(33)

= dz /dt by writing v = v + v
1 1 ii 12

(34)

V

12 I )2
v C(-y+jx) - (A_ee_Z
O

• {_[l+C(_y+jx)]e 2j(_t-_z) C y+jx)}+ Z ( (35)

vzs 1 (A@ee_Z)s . 3j(mt-@z)
v C(-y+jx) _ 3e

O

. 2 2 .

+ jL_y+b-33x)(x +y -2jxy). (-y+3jx)
l_(y+b_Bj x) (y_Bj x)2 (-y+j x)

- 1 (3y+jX)_ej(d]t-@z)}
4 (-y+j x) J

(36)
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From the relation ± /i = _z /_(v_t) we finally express the a-c
• 1 0 1 u

current density, wrzting i = i + i + i , where
1 ii 12 13

i
ll

i
o

_ (A_eeCLZ)jeJ(°Yc-_z) (37)

i
12

i
o

(A_eeaZ)e[l + C(-y + jx)]e 2j(cDt-_z) (38)

i

].s _ (A_eeCCZ)s [ 9 je3J(cot-_z)
o

J (Y+b-3jx)(xe+ye-2jxy) eJ(COt-_z)]-1 (39)
1-(y÷b-Bj x) (y-Bjx) e

form

In the synchronous case (b = 0) these results can be written in the

[1
_eZl cos  z-mj

  loz)- Ra cos 3Z +'_ cos Z + 72

E
z I R2

R sin (Z- 30 °) - _ cos (2Z- 30 °)

213eVoCe

3[3 1- E _ sin (3Z - 30 °) +_ sin (Z - 30 °)

(4O)

- v/3c°s36 (Z - 300)] (41)

v

v C _ R cos (Z + 30 °) + Re sin (2Z + 30 °) -
o

3 7- R3 -_ cos (3Z + 30 ° ) +)-_ cos (Z + 30 ° )

+ 3V_sin72 (Z + 30°)] (42)

and

z)__i_i R sin Z - Re cos 2Z - _ sin 3Z +_ sin Z - cosi 72
o

_z (43)
where R = A_ee and Z = _z - _t.

215



0___

-/
,/

/
Z

/

÷/

/

Z

0

"ki

-17/2 IT

FIG. 4. For three values of amplitude parameter R (= A_eeCZ):

(a) displacement z , (b) excess velocity v , (c) axial electric
• l 1 .

fleld strength Ez, and (d) total electron current density i
(= i + i ) as functions of phase Z (= _z - cot).

o 1 '

216



In Fig. 4, Eqs. 40, 41, 42, and 43 have been plotted versus Z, the

phase, for three values of the amplitude parameter R. Observe that the

abscissa Z in these graphs can be interpreted as the normalized axial

distance _z if time is kept constant and if R varies negligibly within
a distance of one axial wavelength (this implies 2_u/_ << 1).

At the small amplitude R = 0.1, all curves in Fig. 4 are practically

sinusoidal. When R = 0.5, the nonlinearities clearly manifest their pres-

ence and the curves become nonsinusoidal. In the case of R = 0.9, one

can see from Fig. 4 or from Eqs. 40, 41, 42, and 43 that the second and

third order terms are comparable to the first order terms. The third

order theory will not describe the situation very accurately for such
large R. Note, for instance, that the total current density (d of Fig.

4) becomes negative for some values of Z when R = 0.9. This would cor-

respond to a negative electron number density, which is unacceptable.

However, extrapolating (a) of Fig. 4 to even larger R, one would

expect the situation 3(_eZl)/3Z = - _, which is the electron overtaking
condition, to occur at Z slightly less than_/2. This is in good agree-

ment with the experimental findings of Cutler (8). Part (c) of Fig. 4

indicates that the Z range where the electric field is decelerating (Ez

positive) narrows when R increases. In this useful Z range, according

to (b) of Fig. 4, most electrons travel slower than the undisturbed elec-

trons; that is, v is negative. Observe finally, in (d) of Fig. 4, that

for large R a strlong electron bunch is built up somewhat to the left of

the middle of the decelerating range, around Z _V/2.

5. NONLINEARITIES OF THE AMPLITUDE AND THE PHASE

The purpose of this section is to study how the low-level nonline-
arities manifest themselves in the amplitude and phase of the fundamental

frequency waves.

Denoting the fundamental frequency component of E z by Ez_, one ob-

tains from Eqs. 31 and 33

E
z_

2_eVoC2R(-y÷j x)2

= [i - RSfE(x,y,b)]eJ(_t-_z) (44)

where

2 2 .
(x +y -2$xy)

fE(x,y,b) - (_y+jx)e[l_(y+b_3jx)(y_3jx)2]

(45)

Similarly, Eqs. 37 and 39 yield

i
lid

ioRJ
- [I - R_fi(x,y,b)]eJ(_t-_z) (46)
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where

(x +y -2Oxy)
f.(x,y,b) = (y+b-Bjx) 2 2 .

z l-(y+b-3j . 2x)(y-Bjx)

(47)

Since the theory presented here i_ based on the method of successive

approximations, we must assume IR2fE, i| << I. We can therefore write for

the right-hand sides of Eqs. 44 and 46.

(i - R2fE,i)e j(_t-@z) _ (I - SE,i)eJ(_t-@z-_E,i )
(48)

where

SE, i = R2Re(fE, i) (49)

_E,i = R2Im(fE,i)
(5O)

Obviously, S E and S i are the lowest order nonlinear amplitude cor-

rections to the electric field and electron current density waves,

respectively, at the fundamental frequency. Similarly BE and _i are the

lowest order nonlinear phase corrections to these waves. Positive S

indicates that the wave amplitude is less than the linearized theory

would predict. Positive _ indicates that the phase is delayed.

Thus we can write

-J@E

Ez = Ezz(l - SE)e (51)

-j_.

i = i (I - Si)e 1 (52)
160 ll

where the linearized waves E and i are given by Eqs. 31 and 37.
Zl i i

For the electromagnetic power flow Pe_ one finds

Pen_

P
eml

where P
em!

solution.

is the electromagnetic power flow associated with the linearized

With Sp = 2S E,

Pem= P (i -eml Sp)
(53)

It is convenient, before we proceed, to express the parameter

R (= A@eeCUZ) in terms of physically more meaningful quantities. For
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this purpose we make use of the nonrelativistic kinetic power theorem

(9):

mv ._ mi 1 _3a"_1

o Re (v . ,, ) _ o \/a1Pkl- 2e llll! 2e Re _--) (54)

where Pkl is the time average kinetic power flow associated with the linear-

ized waves. [The complete second order expression for the time average

kinetic power flow is Pk = Pkl + Pk2' where Pkl is given by Eq. 54 and

where Pk2 = - (mio/e)(i/4 Vll V"ll + VoVl2dc)" The notation Vl2dC stands

for the d-c part of the velocity expressed by Eq. 35. The term Pk2'

although of the same order as Pkl' is associated with the lowest order

nonlinear waves (9). In the case treated here, one easily proves by the

use of Eqs. 34 and 35 that Pk2 = 0. This is as expected with respect to

the fact that there is no electromagnetic power present that could bal-

ance out a nonzero Pke.]

Now the total linearized power flow, which is the sum of Pkl and the

corresponding electromagnetic power flow P , must vanish for obvious
emz

reasons (see Ref. 5, p. 27). Hence Peml = -Pkl" Denoting the undisturbed

d-c kinetic power flow by Po, one easily obtains by the use of Eqs. 34

and 37 in Eq. 54

P

eml CyR 2 (55)
= p -

O

where _ may be called the efficiency at the distance z. Note that _ is

the efficiency corresponding to the linearized theory.

By the use of Eq. 55 in Eqs. 49 and 50 we can now write

SEmi Re(rE'i) (56)

_/c - y

Im(f i )
__ _ __ E, (57)
_/C y

Equations 56 and 57 are plotted in Figs. 5 and 6 respectively. Note

from Fig. 5 that the theory predicts negative Sp values for sufficiently

high beam voltages (b > I). The conclusions are that in this interesting

beam velocity range the gain of a TWT initially increases when the drive

increases, and that when b _ 1 the gain is independent of the drive within

the accuracy of the third order theory. From the practical standpoint

this means that there exists, according to present theory, an optimum beam

voltage which should be used in situations where a linear relationship is

essential between the input and output powers up to high drive levels.

Because this optimum beam voltage is higher (b = I) than the voltage

corresponding to maximum gain (b = 0), some gain has to be sacrificed

in order to increase amplitude linearity.
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Figure 7 shows some experimentmental results obtained with an RCA

4010 traveling-wave tube. The output power was measured as a function

of the input power, with the beam/helix voltage as a parameter. The

experimental results are in good qualitative agreement with the theoreti-

cal predictions. The beam voltage V o = 1060V corresponds to maximum

small signal gain. At this voltage, saturation is produced by 5 mw in-

put power. When Vo = II60V, then Sp _ 0 and the initial phase of the

curve is essentially linear. Gain is lower but the efficiency is higher

than for V o = 1060V. When Vo = 1240V we clearly have a negative Sp, as

predicted by the theory. At the low voltage V o = 980V we see that Sp is

large and positive, also in good agreement with the theory.

Beam and Blattner (I0) have considered nonlinear effects in traveling-

wave tubes in an early paper. Their approach is based on the assumption

that the energy delivered by the beam to the electromagnetic wave can be

interpreted in terms of a continuous decrease of the average electron

velocity v o as the beam travels along. From a linearized theory one

easily calculates the energy lost by the beam. How v o (that is, b)

varies with distance can then be calculated. Assuming that Eq. 20

remains valid, it is now possible to calculate the continuous change in

the complex propagation constant, that is, the variation of x and y. A

WKB-type phase integral has to be used, of course, to describe the waves.

The results are, in our earlier notations_

S
dx/db

-P--_ (58)
_/C 2x

_E,i l+dy/db (59)
_/c - 4x

in which the quantities dx/db and dy/db can be obtained from Fig. 2.

Equation 58 is also plotted in Fig. 5, and Eq. 59 is plotted in

Fig. 6. It is interesting to note that this rather unsophisticated

method gives results the principal features of which are in acceptable

qualitative agreement with our results. Beam and Blattner's method,

which they have used for phase studies, is not entirely correct, but its

physical basis is simple and the approach may be helpful in developing

a physical understanding of the phenomena involved.

Figure 6 shows the phase delay versus b. For sufficiently slow

beam velocities (b < -1.4), the electric field is accelerated rather

than delayed by nonlinear phenomena (@E negative).

The various nonlinear waves (E z, Jl, vl, etc.) are described by
different axial wave functions rather than by one common wave function

as are the linearized waves. Hence the amplitude corrections S are

different for the E z and i I waves, and the corresponding phase delays

also differ from each other (see Figs. 5 and 6). The method of Beam

and Blattner gives one common wave function also in the nonlinear case.

Consequently the parameters S and _ obtained from their theory apply

to all wave quantities involved (Ez, i I, etc.).
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The dashed curve in Fig. 6 was computed by Paschke (II), who, with

some simplifying assumptions, developed a nonlinear successive approxima-

tion theory for the ordinary delay-line-type TWT, a radially finite device.

The curve for QC = 0, taken from Paschke's Fig. 3, describes the phase

delay of the fundamental frequency a-c wave (_i)" The qualitative agree-

ment between Paschke's and our results is obviously good. Paschke assumes,

however, without any further discussion, that his _i is identical to the

phase delay of the signal in the output terminal. But the output signal

is the amplified electromagnetic wave. Its phase delay, as we have shown,

is not the same as that of the electronic a-c wave.

The phase delay at the signal ouput also depends, of course, on the

matching conditions at the output. The plane TWT model cannot be used

realistically for detailed studies of the phenomena at the output (Ib).

Nevertheless, with reference to the BE curve in Fig. 6, it might be

possible to reduce the nonlinear output phase delay at the expense of

gain if the beam/helix voltage were made less than that corresponding

to maximum gain.

6. THE NONLINEAR SOLUTION, METHOD OF DOMINANT TERMS

This section will show that it is possible to develop a very elegant

method for investigations of the dynamic nonlinearities in the plane TWT.

The method yields the dominant part of all harmonic frequency waves (fre-

quencies n_, n = I, 2, 3, 4 ...) propagating in the system. The integer

n will not be limited to 3 as it was in Sections 4 and 5. In addition

the method offers a possibility of dealing with the plane TWT by use of

the theory of the plane klystron tube (12,13).

Very cumbersome calculations would have been involved if we had

tried to develop the successive approximation approach to higher order

than the third. From the procedure used in the treatment of Eqs. 25, 26,

and 27, it is easy to see that the dominating term of the frequency

appears in the first order solution. The higher order solutions contain

smaller terms of the frequency _. These terms describe saturation and

nonlinear phase shift effects. The dominating term of the frequency 2_

appears in the second order solution, the dominating term of the frequency

3_ in the third order solution, and so on. We ignore now the saturation

and phase shift terms and attempt to find the dominating terms for all

harmonic frequencies.

We start from the original wave equation (Eq. I0), which is written

_ 1 52 _ d2zl e2 _2z--- P cos_ _ _ = 0 (60)
_z 2 v 2 dt 2 ] dt 2 v 2 _t 2

ph ph

Next we assume that _ can be written in the form

z _ _ A e jn(_t-Tz) (61)
1 n

n=l
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where complex notations have been used for simplicity. The terms in the

series are supposed to be the dominant terms just discussed. Saturation

and phase shift terms are neglected. The quantity 7 is, as before, a

solution of Eq. 16.

The acceleration can be written in the form

d 2 z

+di 
dt 2 l dt2

(62)

where the double dot is the linearized second order time derivative,

_2/_te + 2VoS/_z + v_e/_z e. The quantity deg/dt 2, actually defined by

Eq. 62, takes care of that part of the acceleration which is not included
,i

in the term zI.

If the series from Eq. 61 is a solution to Eq. 60, then d2g/dt 2 must
be of the form

d-d-_ _ B ejn(a_-Tz) (63)

dt 2 n=2 n

The frequency _ does not appear in the series from Eq. 63, since

the term'_ in Eq. 62 naturally contains the dominant term of the fre-

quency _ (given by the first order or linearized solution) and the other

terms of frequency _ are ignored.

By the use of Eq. 62 in Eq. 60, we obtain

82 1 82 _2 8_z

(_z )._ _._Lcos2 _ l2 v 2 _t 2 1 v _t _
ph ph

2 i _2 ) d__ 0 (64)
+ =

_z 2 ve _t 2 dt 2
ph

Now the term Ale j(cot-yz) is our linearized solution; that is, it is

a solution to Eq. 64 with the term containing d2g/dt 2 ignored. With this

in mind one easily proves by using Eq. 61 in the first two terms of Eq.
64 that

I _ cos _ i
_z s v2 _t2/ i vs _t s 3z s v2 _t s

ph ph ph

_ (i- _)(-n_)(_ - 7Vo)2 A eJn(_°t-Tz)n=l n

v_ [_+ (co- _.Vo)2Z_]
ph

(65)
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[To obtain this result one has to observe that

2

co Be (_2 1 _2 ) 1 _
-P-- cos _ _ -- S =
s bt s n 8z 2 v2 bt 2 n 2 n

Vph ph

where S n = e jn(cM;-Zz)']

Note that it has been possible to eliminate the term

corn Be z

_2_ cos_ _ l
ev 8t2
ph

Furthermore, Eq. 65 can be used in Eq. 64, which yields, after dropping

the operator _2/_z2 - (I/v_h) _/_t _,

d2f

"_l + _ + (co - 7Vo)Zl = 0
dt 2

or, with Eq. 62,

d 2 z
1

dt 2

+(e 2 =0- 7Vo) z1
(66)

What has now been shown is that the dominant terms at the various

frequencies in the solution to the complicated fourth order equation

(Eq. 60) are identical to those in the solution to the much simpler second

order equation (Eq. 66).

It is interesting to note that both Eq. 60 and Eq. 66 possess the

exact solution

z = AeJ(cot-TZo)

As was pointed out in Section 2, however, the real and imaginary parts

taken separately are not exact solutions to Eq. 60. As far as Eq. 66 is

concerned, the real and imaginary parts are indeed exact solutions. This

means that a reasonably good nonlinear solution to our problem is

ctz

= Ae O (COt - _z °zI cos )

-cLz

l (cot - pz + _Zl) (67)
= AeCUZe cos
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Since 1OUZll <<< 1, we can also write

_eZl = R cos (cot - _Zo) (68)

or with Z o = _z o - cot,

_eZl = R cos Z (69)o

Equation 69 is plotted in (a) of Fig. 8 for R = 0. I, R = 0.5, and

R = 1.0. If _e _ _ and if 2_d_ << I, it is now easy to plot _eZl versus

Z (= _z - _t), the normalized axial distance. This is done in (b) of

Fig. 8. Observe in this connection that Z = Zo + _z l and that _z I is

easily obtained from (a) of Fig. 8. One sees that electron overtaking

is just about to occur at Z = _/2 when R = 1.0. The dashed curve in (b)

of Fig. 8 is taken from (a) of Fig. 4 for R = 0.5. It is obvious that

the agreement between the results obtained with the successive approxi-

mation method on the one hand and with the dominant term method on the

other is good. The dominant term method is elegant and time saving, but

the price one pays is the neglect of information about phase shift and

saturation. (It should be remarked that Eq. 67 is not yet of the form

of Eq. 61. We will return to this question and compute the dominant

terms in the next section.)

If we write Eq. 67 in the form

Re[eJ(art-TZo ) ] J(cot-Tz÷Tz z )
z = A = A Re[e ] (70)
i

we find by the use of Eq. I that

v jz

l - R Re[(x - jy)e o] (71)vC
o

In the case b = 0 we now find, with x = v/_/2 and y = - (I/2), that

v
l

vC
o

- R cos (Z + 30 °) (72)
o

Equation 72 is plotted versus Z in (c) of Fig. 8, and graphs of Eq. 71

are shown in (a) and (b) of Fig. 9. From these curves one can see how

the d-c velocity v o (that is, the parameter b) influences the shape of

the nonlinear a-c velocity v I. Especially in (a) of Fig. 9 one notices

that the faster the beam, the more the velocity wave falls back in phase.

By using Eq. 6, one obtains from Eq. 70

E jZ

z - R Re[(jx + y)2e o] (73)

2Vo_eCe
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For b = 0 this yields

E
z

2Vo_e c2

- R sin (Z - 30 ° ) (74)
o

Equation 74 is plotted in (d) of Fig. 8, and Eq. 73 in (c) and (d)

of Fig. 9. Observe that the electric field wave moves back in phase

when the d-c velocity (parameter b) increases.

By the use of Eq. 4, one finally obtains from Eq. 70

i +i
o z 1

i I-R sin Z
o o

(75)

Equation 75 is plotted versus Z in (e) of Fig. 8. As in (d) of Fig. 4,

observe that a strong a-c bunch is built up around Z = _/2. From (c)

and (d) of Fig. 9 we see that choosing b = 0.8 would center the retarding

a-c field around the bunch. We may therefore expect to obtain good ef-

ficiencies if the d-c beam velocity is given a value somewhat higher than

that corresponding %o the maximum small signal gain. The experimental

observations shown in Fig. 7 are in perfect agreement with this prediction.

In Fig. I0, finally, Eq. 72 is plotted for R = 2 and compared with

Cutler's (8) measurement of the a-c velocity in an experimental TWT. In

the situation shown, the drive is about 6 dB above overtaking and our

theory is no longer valid, Nevertheless, the general shape of the two

curves is essentially the same. It is beyond the scope of the present

report to attempt to extrapolate the theory to the range beyond over-

taking. Note, however, that overtaking occurs about 14 dB (6 dB + 8 dB)

below saturation, leaving a large and important drive range untouched by

analytical theories.
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v,

_C
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-41

J
/

/
/3 -n -2n
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FIG. I0. The a-c velocity versus phase, a comparison of Cutler's

experiment and our Eq. 72 in the range beyond overtaking.
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7. CALCULATION OF THE DOMINANT TERMS

In Section 6 we reduced the exact fourth order wave equation (Eq.

60) to an approximate second order wave equation (Eq. 66). The exact

solution (Eq. 67) of the latter was then studied in detail. This solu-

tion made it possible to give simple expressions for the various wave

quantities of interest. The purpose of the present section is to ex-

tract the dominant terms. The exact solution is more convenient to

handle than the series of dominant terms in order to obtain an over-all

physical picture of the nonlinear phenomena, but it is nothing more than

a reasonably good approximation to the series of dominant terms. These

will now be computed.

Use will be made of the theory elsewhere developed for the plane

klystron tube (12). The exact wave equation of the plane klystron tube

is

d s z
1

dt 2

2

-- + co z = 0 (76)
pl

If the undisturbed beam is modulated at the plane z = 0 in an ideal

klystron gap producing an a-c velocity v_ cos _t, the proper exact solu-

tion is

o

v I De

z - sin cos (arc- _eZo ) (77)
8e I Vo_ p _pZo

If l_pZ_l << 7/2, Eq. 77 can be written in the approximate form

o

v I De
_-- sin cos (_t - + ) (78)

_eZ Vo_p _pZ _e z _eZl

Equation 68, on the other hand, can be written

_eZl _ R cos (a_t - _z + _eZl) (79)

Table l compares the corresponding equations concerned with the

plane TWT (approximate) and with the plane klystron (exact). Equations

80 and 81 in the table are valid for both the TWT and the klystron,

provided the proper expressions (given in the table) are used for R and

T.

The series expansion for _eZl (Eq. 80) is obtained by applying Fourier

series to the formally identical Eqs. 78 and 79. The inversion procedure

is given in detail in Ref. 12, Eqs. 37 through 45, and will not he re-

peated here.

It should be pointed out that the formula

Jn(nR) _ _v

229



TABLEI. Comparison of Equations for Plane TWTand Plane Klystron

Plane TWT

d 2 z

l e

---f-+ (e- 7Vo) zI = 0
dt

_Z

R = ASee_ T = _t - _z

_eZl _ R cos (T + _eZl )

(66)

(79)

Plane Klystron

d _ z

---i_ +_2z = 0
dt 2 p i

O

vl _e
R-

Vo[3 p
sin _pZ T = _t -

_eZl _-_R cos (T + _eZl)

_e Z

(76)

(78)

co 17-
7, 2 Jn(nR) sin [n(T + _)]_eZl n

n=l

co R n .n.n-i 2)]7, _ (_) sin [n(T +
n=l

1 R 2 3
= R cos T - _ sin 2T - _ Rs cos 3T

1 125 R5
+ _ R4 sin 4T + _-_ cos 5T - ...

(80)

il _(_eZl) oo (_)n .l.n-i [n(T + 2)3_ _ (_) cosi _T 7, n!
o n=l

9

= - R sin T - R e cos 2T + _ R3 sin 3T

4 _ cos 4T 625 Rs sin 5T
+ _ - 38---_ ''"

(81)
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which is valid when R 2 << I, has been used in Eq. 80. Furthermore, a

simple convergence test immediately gives the result that the series

R n u-i

rl=l

is convergent when R < 2/e. This, of course, does not tell us very much

about the precise range of validity of Eq. 80, since the phase shift and

saturation terms have been ignored anyway.

If we introduce the notation Z (= _z - _t = -T) into Eq. 80, we ob-

tain

I R 2 3 R 3 cos 3T
_ezl = R cos Z + _ sin 2Z -

_ _ 125 R 5
I R4 sin 4Z + _ cos 5T .3 ' "

(82)

The reader should now compare Eq. 82 with Eq. 40 and identify the three

dominant terms that are common to these equations. Equation 40, which

is limited to the third order, contains the three lowest dominant terms

and the significant phase shift and saturation terms up to the third

order. There is also a second order d-c term in Eq. 40. Equation 80

gives the dominant terms of all orders, but misses the phase shift and

saturation terms completely.

From Eq. 81 and Fig. 12 one concludes that unless R << I, the am-

plitudes of the harmonic frequency waves are large. This is expected,

of course, on account of the development of the strong and narrow elec-

tron current bunch around the phase Z = _/2 when R is large enough. At

the same time, the coupling between the electron beam and the slow wave

medium is strong, for natural reasons, even at harmonic frequencies. In

a real traveling-wave tube one should expect a much less pronounced gen-

eration of harmonic frequencies, owing to weak coupling.

8. CONCLUDING REMARKS

This report is concerned with a purely analytical nonlinear theor '

for a plane traveling-wave tube (TWT) model. The model, described in

Section I, consists of an infinitely wide confined single-velocity elec-

tron plasma stream of zero temperature, which interpenetrates an aniso-

tropically conducting homogeneous medium. In the absence of the electron

stream, the medium supports plane electromagnetic slow TM (transverse

magnetic) waves, and thus plays the same role as the slow wave structure

in a real TWT. A plane model was chosen to avoid the theoretical com-

plications associated with the radial boundary conditions. This means,

of course, that the present theory does not describe TWT effects caused

by the radial finiteness of the beam or the slow wave structure. But

the model allows one to study, in the simplest conceivable manner, the

basic physical effects associated with the TWT amplification mechanism

itself.
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In Section 2 the exact nonlinear wave equation (Eq. I0) for the

plane _VT is derived by the use of Maxwell's equations. It is assumed

that the electron velocity is a one-valued function of distance; that

is, electron overtaking is not allowed. This restriction considerably

simplifies the analysis, but it limits the theory to drive levels well

below saturation.

The results of a linearized theory of the plane TWT are briefly

discussed in Section 3. For a detailed linear analysis of the device,

the reader is referred to Refs. la and lb. In Section 4 the method of

successive approximations is applied to obtain a nonlinear third order

solution. Some of the results are demonstrated in Fig. 4, which shows

how the sinusoidal form of the various wave quantities is distorted by

nonlinear processes when the wave amplitudes become large.

The nonlinear effects appearing in the amplitude and phase of the

fundamental frequency wave are studied in Section 5 (Figs. 5 and 6). A

number of new and rather interesting results are derived and discussed.

Some of these have been checked experimentally by the use of a commercial

TWT. The qualitative agreement between the theory and the experiments

is good (Fig. 7).

Sections 6 and 7 are concerned with another method of dealing with

the nonlinear fourth order wave equation (Eq. I0), the method of dominant

terms. This method ignores some of the important nonlinear effects (satu-

ration, phase shift), but it leads quickly and elegantly to simple

implicit expressions for the wave quantities. Figure 8, depicting these

expressions, shows that the agreement between the two methods (successive

approximations and dominant terms) is close. In Section 7 the dominant-

term-type approximate theory for the plane TWT is shown to be formally

identical to the exact theory of the plane klystron tube, which is treated

in Ref. 12. By the use of the plane klystron theory the dominant terms

(the leading terms at each harmonic frequency n_, n = I, 2, 3, ... _) are

computed for the plane TWT.
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